
 International Journal of Scientific Modern Research and Technology ISSN: 2582-8150
 (Volume: 15, Issue: 2, Number: 1) Paper ID: IJSMRT-24150201

IJSMRT|May-2024 www.ijsmrt.com Page 1

Predicting Software Bugs using Deep

Learning: A Comprehensive Review
Avinash Kumar1, Joy Bhattacharji2, Prof. Anshul Jain3

1M. Tech Scholar, 2, 3Assistant Professor
1, 2, 3Department of CSE, 1,2TIT-A, 3TIT, Bhopal, India

Abstract: Defect prediction is one of the key challenges in software development and programming language research for

improving software quality and reliability. The problem in this area is to properly identify the defective source code with high

accuracy. Developing a fault prediction model is a challenging problem, and many approaches have been proposed

throughout history. The recent breakthrough in machine learning technologies, especially the development of deep learning

techniques, has led to many problems being solved by these methods. Our survey focuses on the deep learning techniques for

defect prediction. We analyze the recent works on the topic, study the methods for automatic learning of the semantic and

structural features from the code, discuss the open problems and present the recent trends in the field.

Keywords: defect prediction; anomaly detection; program analysis; code understanding; neural networks; deep learning.

 IJSMRT-24150201

I. INTRODUCTION

A software defect is, by definition, "an imperfection

or deficiency in a work product where that work

product does not meet its requirements or

specifications and needs to be repaired or replaced,"

according to the IEEE Standard Classification for

Software Anomalies [1]. Software bugs can result in

a number of problems. Standard techniques for

finding software defects include code reviews and

manual testing. The significant drawback of these

methods is their high time and energy requirements.

Using automated techniques for Software Defect

Prediction is one strategy to save expenses and

enhance quality in software projects (SDP). For this

reason, research on software bug prediction is

essential in the fields of programming languages and

software engineering. Finding the problematic code

precisely (both in terms of recall and precision) is

the aim. The advancement and improvement of

machine learning has led to the automation of

solutions for many difficulties. Advances in the

fields of artificial neural networks and machine

learning, along with the increasing power of modern

computers (such supercomputers built on GPUs

with AI acceleration modules), have given rise to

new concepts like deep learning.

The fundamental idea is that complex issues can be

solved by using a multi-layered artificial neural

network, which can progressively extract higher-

level properties from the original input. A possible

answer to the problem of software defect prediction

is provided by the development of representation-

learning algorithms by researchers, which

automatically learn semantic representations of

programs and use this representation to identify the

code that is prone to errors. It has been demonstrated

that earlier methods that relied on explicit features—

How to cite this article: Avinash Kumar, Joy Bhattacharji, Prof. Anshul Jain, “Predicting

Software Bugs using Deep Learning: A Comprehensive Review " Published in International

Journal of Scientific Modern Research and Technology (IJSMRT), ISSN: 2582-8150, Volume-

15, Issue-2, Number-1, May 2024, pp.1-9, URL: https://www.ijsmrt.com/wp-

content/uploads/2024/06/ IJSMRT-24150201.pdf

Copyright © 2024 by author (s) and International Journal of Scientific Modern Research

and Technology Journal. This is an Open Access article distributed under the terms of the

Creative Commons Attribution License (CC BY 4.0)

 (http://creativecommons.org/licenses/by/4.0/)

http://www.ijsmrt.com/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

 International Journal of Scientific Modern Research and Technology ISSN: 2582-8150
 (Volume: 15, Issue: 2, Number: 1) Paper ID: IJSMRT-24150201

IJSMRT|May-2024 www.ijsmrt.com Page 2

like code metrics [2,3]—were not as effective as

those that used these implicit aspects.

Software defect prediction is still in its infancy as a

field, hence state-of-the-art surveys [3-5] only

include a small portion of the most current research

on cutting-edge techniques. Recent advances in

natural language processing (NLP) and related fields

have produced new, potent tools, such as the

Transformer language models. These techniques

were then successfully applied to software

engineering projects. The goal of our survey is to

present an overview of these advancements in light

of the most current primary research that will be

published in 2019–2021. This survey may be useful

for scholars and experts in the fields of software

defect prediction, code interpretation, and related

fields.

Certain semantic errors may be difficult to find just

by looking at the source code. For example, in [6],

the bytecode of Kotlin programs that have been

compiled is examined to identify compiler errors. In

[7], the assembly code—which the compiler

generates from the C source code—is utilized to

reveal the behavior of the program and identify its

flaws. Nevertheless, the main source of information

for the fault prediction remains the source code. The

main focus of this overview is on resources and

techniques for researching program sources.

Generally, when developing a defect prediction

model, the subsequent steps are employed:

Getting source code samples from software project

repositories is the initial step in preparing the dataset

(or finding an appropriate existing dataset). Second,

take functionality out of the code. Use the train

dataset to teach the model. To evaluate the model's

effectiveness, run tests on the test dataset.

Figure 1: Scheme of the process of constructing the

defect prediction model.

This is how the survey is laid out: In Section 2, we

briefly outline our survey's methodology. The

different deep learning approaches used for defect

prediction are summarized in Section 3. The key

challenges of the issue are outlined in Section 4. The

most up-to-date research on defect prediction

algorithms is presented in Section 5. In the last

section, we discuss our predictions for the field's

future.

2. RESEARCH QUESTIONS

Let's recap our survey's findings by developing

some study questions:

• RQ1: Which deep learning methods have been

successfully used for predicting software defects?

• RQ2: To what extent do these important aspects

contribute to the problem's complexity?

• RQ3: What tendencies have been seen in the

foundational work using deep learning for

predicting software defects?

• RQ4: What Approaches Have Been Taken So Far?

We need a representation of the source code in order

to modify it. Since most machine learning

algorithms employ vectors, this representation

should, on the one hand, be as straightforward as

possible. However, the portrayal must include all

relevant details. An "embedding" is a numerical

vector that represents the code itself.

The code's source may be represented in a number

of different ways. Furthermore, different

granularities are required for various purposes, such

as token-level embedding for code completion and

function-level embedding for function clone

detection.

Subsystem, component, file/class, method, and

change embeddings are all employed for the

software defect prediction issue (for more

information on code embeddings, see [8,9]). The

vector may be made using the constructed features

as a starting point. In this method, the best

characteristics are hand-picked by an expert (see, for

example, [10,11]). The statistical properties of code,

such its size, complexity, churn, and process

metrics, are typical examples. The numerical vector

http://www.ijsmrt.com/

 International Journal of Scientific Modern Research and Technology ISSN: 2582-8150
 (Volume: 15, Issue: 2, Number: 1) Paper ID: IJSMRT-24150201

IJSMRT|May-2024 www.ijsmrt.com Page 3

may also be generated by interpreting the code itself.

The code may be represented in a number of

different ways.

Code tokens or characters are the norm [12].

Predicting what will come next is a common goal in

training sequence-based neural networks. Abstract

syntax trees (AST) [13] are another method for

representing source code. Statements and operators

are represented as tree nodes, with operands and

values as leaves. Tree-based models are taught to

make code predictions by creating new nodes in the

tree while taking into consideration the current one.

Using a classification technique to split the code into

two groups—defect code and good code—is the

standard method for defect prediction (see, for

example, [14]).

However, methods relying on these hand-crafted

characteristics often fail to accurately reflect the

source code's syntax and semantics. If two pieces of

code have the same structure and complexity but

implement distinct functions, it might be difficult for

standard code metrics to tell them apart. Traditional

properties, such as the number of lines of code, the

number of function calls, and the number of tokens,

would stay the same, even if we switched several

lines in the code fragments (see [2]). Therefore, the

semantic information is more crucial than these

measurements for fault prediction.

Instead than relying on explicitly hand-crafted

features, modern methods often rely on extraction of

the source code's implicit structure, syntactic, and

semantic features. Deep Belief Networks (DBN),

Convolutional Neural Networks (CNN), Long Short

Term Memory (LSTM), and Transformer

architecture are some of the most widely used deep

learning approaches for software fault prediction.

3. DEEP BELIEF NETWORKS

Multi-layered neural networks provide the basis of

Deep Belief Network generative models [15]. There

is a single input layer, a single output layer, and

numerous hidden layers in this network. A feature

vector, representing the input layer's data, is

generated by the output layer. The random links

make up each successive layer. As can be seen in

Figure 2, the DBN's defining characteristic is that

nodes only communicate with those in the layers

above and below them.

Figure 2: Architecture of the Deep Belief Network.

It's possible that [16] is one of the first attempts to

combine AST with deep learning. The authors offer

the method for predicting software defects at the

level of code modifications. New expressive

features are generated by the DBN (which is fed by

the conventional code metrics) and used in the

standard machine learning classifiers. Relationships

are derived from conventional code metrics such the

changed number of modules, folders, files, lines of

code, and developer experience level. Following

their success with the decision tree method, the

authors presented an ensemble learning technique

called "TLEL" [17].

Wang et al.'s [2,18] research also make use of the

DBN, but in a somewhat different context. The

authors have created a DBN to automatically learn a

semantic characteristics from the source code, which

can then be used for defect prediction based on code

semantics. For both file-level and change-level

prediction, the AST and source code modifications

of the programs are utilized as input to the network.

After extracting characteristics from source code

files, the authors apply standard machine learning

classifiers to determine whether or not the files

include bugs. The fundamental problem with the

DBN is that it does not accurately reflect the

sequence in which statements are executed and

functions are called.

4. LONG SHORT-TERM MEMORY

One sort of recurrent neural network designed

specifically for handling data sequences is the Long

Short Term Memory [19]. As can be seen in Figure

3, the LSTM network is built using LSTM nodes.

http://www.ijsmrt.com/

 International Journal of Scientific Modern Research and Technology ISSN: 2582-8150
 (Volume: 15, Issue: 2, Number: 1) Paper ID: IJSMRT-24150201

IJSMRT|May-2024 www.ijsmrt.com Page 4

The unit's fundamental component is a memory cell,

which stores values for both short and extended

periods of time. This enables the LSTM-based

models to extract the source code's long-range

context information.

In work [11], an LSTM-based model was utilized to

understand the syntactic and semantic components

of source code. The suggested method converts code

into a feature vector and a token state encoding the

token's semantic information by feeding it into a

Long Short-Term Memory (LSTM) system. A

further model, the Tree-LSTM, was built using the

AST format as its input [20].

In [21], a neural bug-finding approach is presented.

The authors use a binary classifier, trained using

samples of both flawed and perfect code, to identify

errors. The authors use preexisting static bug

detection tools to classify issues into appropriate

categories in order to generate a labeled dataset.

Using the one-hot encoding for each token, the code

is transformed from its tokens sequence

representation into a real-value vector. Then, an

LSTM-based network acting as a model in both

directions is used.

 Figure 3: Scheme of the LSTM unit

The authors of [22] offer a model for defect

prediction based on the representation of AST path

pairs. The AST route is retrieved as a mixture of

symbol and control sequence so that the code may

be processed. A route vector is generated by feeding

these sequences into a Bi-LSTM network. The

global attention method is then used to aggregate all

the vectors into a single one that represents the

complete code snippet. The completed embedding

representations are then used as a classification tool.

5. CONVOLUTIONAL NEURAL NETWORKS

When it comes to processing data with a mesh-like

structure, the Convolutional Neural Networks [23]

are the way to go. There are two distinguishing

characteristics of this network. First, the network as

a whole follows the same structure as the local

nodes' connections. The network is able to learn the

structural context of the code in the near term.

Second, all the settings are the same across the

board. The network may acquire knowledge about

the code element regardless of where it occurs in the

code. Figure 4 depicts the overall CNN design.

Figure 4: Architecture of the Convolutional Neural

Network.

The model using the CNN architecture is shown in

reference [24]. Token vectors are parsed from the

AST and then transformed to numbers. Next, a CNN

is trained using these vectors as input. The retrieved

semantic and structural variables and code metrics

are then employed in a logistic regression for

software fault prediction.

Commit messages and code modifications are used

as inputs into a deep learning model that predicts

errors [25]. In this case, the CNN serves as the basis

for the model. Convolutional network layers are

used to analyze the code modifications and commit

message, and a feature combination network layer

combines the resulting embedding vectors. We see a

proposal for yet another deep learning-based model

for fault prediction. Triplet loss and weighted cross-

entropy loss are used in the training of the neural

network. As a kind of classifier, the random forest is

used.

Machine learning methods that rely on neural

networks find it difficult to tackle the challenge of

software fault prediction.

http://www.ijsmrt.com/

 International Journal of Scientific Modern Research and Technology ISSN: 2582-8150
 (Volume: 15, Issue: 2, Number: 1) Paper ID: IJSMRT-24150201

IJSMRT|May-2024 www.ijsmrt.com Page 5

A. Lack of Data

The absence of big, publicly accessible labelled

datasets specifically for fault prediction is a

significant obstacle. The issue may be solved by

using the pre-trained contextual embeddings. Using

the self-supervised goals such masked language

modelling, next sentence prediction, and substituted

token recognition, the language model is pre-trained

on a large unlabeled source code corpus.

Table 1: presents the popular unlabeled code

datasets suitable for this task.

Dataset Content Size Used in

Tasks

Bigque

ry

github

repos

[3]

Python

source

code

4 M

files

Pre-training

CuBERT

model

Py150

[4]

Python

source

code,

AST

8423

repos,

149,993

files

Fine-tuning

CuBERT

model

Js150

[5]

Javascrip

t source

code,

AST

150,000

source

files

Code

Summarizati

on; Defect

Prediction

Dataset

s for [6]

Java

source

code

9500

projects,

16 M

samples

in the

largest

one

Code

summarizatio

n

GitHub

Java

Corpus

[8]

Java

source

code

11,000

projects

Language

Modelling

CodeN

N

Dataset

[9]

C#

source

code and

summari

es

66,015

fragmen

ts

Code

Captioning

Dataset

for [6]

Kotlin

source

code,

AST,

bytecode

47,751

repos,

932,548

files,

4,044,7

90

function

s

Anomaly

detection,

defect

prediction

Dataset

for [10]

C#

source

code

29

projects,

2.9 M

lines of

code

Variable

Misuse

detection

Smaller labelled datasets may be used to fine-tune

the pre-trained model for defect prediction. Table 2

provides a catalogue of open-source datasets for

defect prediction. These datasets often consist of

pairs of good and bad snippets of code.

 Table 2: List of labelled datasets.

Dataset Content Size Used in

Tasks

SEIP

Lab

Softwar

e Defect

Predicti

on Data

[11]

Complexi

ty metrics

5 subsequent

releases of 3

projects from

the Java

Eclipse

community

Data

collecti

on and

linking

PROMI

SE

Softwar

e

Enginee

Numeric

metrics;

reported

defects

15,000

modules

Defect

predicti

on

http://www.ijsmrt.com/

 International Journal of Scientific Modern Research and Technology ISSN: 2582-8150
 (Volume: 15, Issue: 2, Number: 1) Paper ID: IJSMRT-24150201

IJSMRT|May-2024 www.ijsmrt.com Page 6

ring

Reposit

ory [12]

(false/tru

e)

NASA

Defect

Dataset

[13]

Numeric

metrics;

reported

defects

(false/tru

e)

51,000

modules

Defect

predicti

on

REPD

datasets

[15]

Numeric

metrics,

semantic

features,

reported

defects

10,885

fragments in

the largest

one

Defect

predicti

on

GPHR

[16]

Java code

and

metrics

3526 pairs of

fragments,

buggy and

fixed, code

metrics

Defect

predicti

on

BugHun

ter [17]

Java

source

code;

metrics;

fix-

inducing

commit;

number

of

reported

bugs

159 k pairs

for 3

granularity

levels

(file/class/m

ethod), 15

projects

Analyz

ing the

importa

nce of

comple

xity

metrics

GitHub

Bug

DataSet

[18]

Java

source

code;

code

metrics;

number

of

reported

bugs and

15 projects;

183 k classes

Bug

predicti

on

vulnerabi

lities

Unified

Bug

Dataset

[19]

Java

source

code;

code

metrics;

number

of

reported

bugs

47,618

classes;

43,744 files

Bug

predicti

on

Neural

Code

Translat

or

Dataset

[20]

Pairs of

buggy

and fixed

abstracte

d

method-

level

fragment

s 46 k

pairs of

small

fragment

s

(under 50

tokens), 50 k

pairs of

medium

fragments

(under 100

tokens)

Code

refinem

ent

Real-world code projects sometimes have an uneven

distribution of classes, which, together with other

considerations, increases the challenge of creating

datasets. There are often fewer incorrect files or

methods than right ones in a project. The result may

be that the standard classifiers would identify the

larger group (the proper code) but fail to recognize

the much smaller group (the defect-prone code). The

model's performance will suffer as a result of this.

Several oversampling strategies are presented as a

means of correcting this discrepancy. The authors

developed combined methods. It uses Synthetic

Minority Over-Sampling Methods (SMOTE and

SMOTUNED) to prepare datasets and ensemble

methods to sort out bugs and good programs. The

fraction of accurate and faulty code in each project

in the dataset is considered by the authors of [22].

The components of the smaller class are duplicated

in order to achieve class balance.

http://www.ijsmrt.com/

 International Journal of Scientific Modern Research and Technology ISSN: 2582-8150
 (Volume: 15, Issue: 2, Number: 1) Paper ID: IJSMRT-24150201

IJSMRT|May-2024 www.ijsmrt.com Page 7

B. Lack of Context

The context in which the code exists is also

problematic. In contrast to natural texts, a code

element's dependencies may extend to neighboring

code fragments or even farther afield. It is also

frequently difficult to determine whether the code

piece is flawed without knowing the larger context

in which it is used. It may be challenging to distil the

core of a defect from a dataset that consists of pairs

of bugged and corrected code snippets.

The Transformer network-based methods were

developed for natural language processing issues

characterized by a high degree of locality of

reference in the underlying data. A token's

immediate surroundings reveal a great deal about it.

As a result, such models often interpret the code's

source as a list of tokens.

5. CONCLUSIONS

Predicting faulty code is a key obstacle in the field

of software engineering today. Recently developed

multi-layered neural networks and deep learning

algorithms offer potent ways for representing source

code in a way that captures its semantic and

structural information using learning algorithms.

Using deep learning approaches, such as the

Transformer architectures, this survey details the

most recent findings in software fault prediction

research. We identify the primary challenges of the

defect prediction problem as an absence of data and

a high degree of contextual complexity, and we

propose potential solutions to these issues.

We think that the following concepts, which take

into consideration the most recent developments in

machine learning approaches for the software defect

prediction issue, will contribute significantly to the

advancement of this discipline.

• Self-supervised training on vast corpora of

unlabeled data may be used to minimize the size of

the required labelled datasets. In addition, the

unlabeled data must be used for the pre-training of

associated tasks, which contributes to the trained

models' enhanced depth and breadth of knowledge

of the original code. As a result, the underlying flaws

may be identified.

• We are currently seeing the effective translation of

these approaches to tackle diverse code

comprehension challenges, capitalizing on the most

recent breakthroughs in machine learning

techniques in natural language processing in

programming languages. To better consider the code

context while searching for faults, one may optimize

the transformers' self-attention mechanism so that

they can be used across extended sequences.

• It's fairly uncommon for bugs to affect many

related functions or lines of code, and to have

multiple potential solutions. It's possible, for

instance, to correct a defect either inside the function

itself or at the point when it's called. As a result, the

error can no longer be located at a particular line

number in the source code. Even if a bug isn't

initially present in a single line of code, it may

become a defect later on. The original

implementation may no longer be suitable due to the

fact that the code's original intent has changed as a

result of new circumstances.

The idea of a flaw becomes muddled as a result of

all this. The terms "potentially defective" and

"strange" code are so introduced. Finding an unusual

code and honing existing ones are two examples of

interesting challenges in this area. Good

representations of the code and updates to the code,

taking into consideration the structure and context of

the source code, are necessary for these tasks.

Identifying a best-performing state-of-the-art model

is challenging. There are no agreed-upon, industry-

wide measures by which this issue is measured, and

academics are using a wide variety of measurements

and datasets in their investigations. As a

consequence, comparing the experimental outcomes

of the foundational papers is problematic. While

state-of-the-art deep learning algorithms often

outperform baseline deep learning and classic

metrics-based ones (achieving the rise of F1 from

60% to 80% in certain circumstances), extant

comparative studies such as suggest otherwise. No

method provides a level of reliability in recall,

precision, and accuracy that is adequate for real-

world use. Defect prediction is therefore still an

unsolved issue.

REFERENCES

http://www.ijsmrt.com/

 International Journal of Scientific Modern Research and Technology ISSN: 2582-8150
 (Volume: 15, Issue: 2, Number: 1) Paper ID: IJSMRT-24150201

IJSMRT|May-2024 www.ijsmrt.com Page 8

[1] Jitimon Angskun, Suda Tipprasert and Thara

Angskun, “Big data analytics on social networks

for real-time depression detection”, Journal of Big

Data, 2022.

[2] Md. Rafidul Hasan Khan; Umme Sunzida

Afroz; Abu Kaisar Mohammad Masum; Sheikh

Abujar; Syed Akhter Hossain, “Sentiment Analysis

from Bengali Depression Dataset using Machine

Learning”, 11th International Conference on

Computing, Communication and Networking

Technologies (ICCCNT), 2020.

[3] Tanna D, Dudhane M, Sardar A. Deshpande K,

Deshmukh N., “Sentiment analysis on social media

for emotion classification”, In: International

Conference on intelligent computing and control

systems, 2020.

[4] Md Kamrul Hasan, Hasan Mahmud, Ahmed Al

Marouf, “Comparative Analysis of Feature

Selection Algorithms for Computational Personality

Prediction From Social Media”, IEEE Transactions

on Computational Social Systems, 2020.

[5] Yang X, McEwen R, Ong LR, Zihayat M., “A

big data analytics framework for detecting user-

level depression from social networks”, Int J Inf

Manag. 2020.

[6] Lyua YW, Chow JC-C, Hwang J-J, “Exploring

public attitudes of child abuse in mainland China: a

sentiment analysis of China’s social media”, Weibo.

Child Youth Serv Rev. 2020.

[7] Chen B, Cheng L, Chen R, Huang Q, Phoebe

Chen Y-P. Deep neural networks for multiclass

sentiment classification. In: IEEE 20th International

Conference on high performance computing and

communications, IEEE 16th International

Conference on Smart City, IEEE 4th International

Conference on Data Science and Systems 2018; pp.

854–59.

[8] Sethi M, Pande S, Trar P, Soni P. Sentiment

identification in COVID-19 specific tweets. In:

International Conference on electronics and

sustainable communication systems (ICESC 2020),

pp. 509–16,

https://doi.org/10.1109/ICESC48915.2020.915567

4.

[9] Kundale JU, Kulkarni NJ. Language

independent multi-class sentiment analysis. In: 5th

International Conference on computing

communication control and automation

(ICCUBEA), 2019; pp. 1–7,

https://doi.org/10.1109/ICCUBEA47591.2019.912

8383.

[10] Ruz GA, Henriquez PA, Mascareno A.

Sentiment analysis of Twitter data during critical

events through Bayesian networks classifers. Future

Gener Comput Syst. 2020;106:92–104.

[11] Yang X, McEwen R, Ong LR, Zihayat M. A big

data analytics framework for detecting user-level

depression from social networks. Int J Inf Manag.

2020;54:102141.

[12] Tao X, Dharmalingam R, Zhang J, Zhou X, Li

L, Gururajan R. Twitter analysis for depression on

social networks based on sentiment and stress. In:

6th International Conference on behavioral,

economic and socio-cultural computing, 2019; pp.

1-4, https://

doi.org/10.1109/BESC48373.2019.8963550.

[13] Tanna D, Dudhane M, Sardar A. Deshpande K,

Deshmukh N. Sentiment analysis on social media

for emotion classifcation. In: International

Conference on intelligent computing and control

systems (ICICCS 2020), pp. 911–15,

https://doi.org/10.1109/

ICICCS48265.2020.9121057.

[14] Arora P, Arora P. Mining Twitter data for

depression detection. In: IEEE International

Conference on signal processing and

communication (ICSC), 2019; pp. 186–89,

https://doi.org/10.1109/ ICSC45622.2019.8938353.

[15] Chen Y, Zhou B, Zhang W, Gong W, Sun G.

Sentiment analy sis based on deep learning and its

application in screening for perinatal depression. In:

IEEE Third International Conference on data

science in cyberspace. 2018; pp. 451–6.

https://doi.org/ 10.1109/DSC.2018.00073.

[16] Uddin AH, Bapery D, Arif ASM. Depression

analysis from social media data in Bangla language

using long short term memory (LSTM) recurrent

neural network technique. In: International

http://www.ijsmrt.com/
https://ieeexplore.ieee.org/author/37088532867
https://ieeexplore.ieee.org/author/37088532829
https://ieeexplore.ieee.org/author/37088532829
https://ieeexplore.ieee.org/author/37087139108
https://ieeexplore.ieee.org/author/37086143335
https://ieeexplore.ieee.org/author/37086143335
https://ieeexplore.ieee.org/author/38667130000
https://ieeexplore.ieee.org/xpl/conhome/9211590/proceeding
https://ieeexplore.ieee.org/xpl/conhome/9211590/proceeding
https://ieeexplore.ieee.org/xpl/conhome/9211590/proceeding
https://www.researchgate.net/profile/Md-Kamrul-Hasan-8
https://www.researchgate.net/profile/Hasan-Mahmud-6
https://www.researchgate.net/profile/Ahmed-Marouf-2
https://www.researchgate.net/profile/Ahmed-Marouf-2
https://www.researchgate.net/journal/IEEE-Transactions-on-Computational-Social-Systems-2329-924X
https://www.researchgate.net/journal/IEEE-Transactions-on-Computational-Social-Systems-2329-924X
https://doi.org/10.1109/ICESC48915.2020.9155674
https://doi.org/10.1109/ICESC48915.2020.9155674

 International Journal of Scientific Modern Research and Technology ISSN: 2582-8150
 (Volume: 15, Issue: 2, Number: 1) Paper ID: IJSMRT-24150201

IJSMRT|May-2024 www.ijsmrt.com Page 9

Conference on computer, communication, chemical,

materials and electronic engineering (IC4ME2), 11–

12 July, 2019; pp. 1-4,

https://doi.org/10.1109/IC4ME247184.2019.90365

28.

[17] Cheng L-C, Tsai S-L. Deep learning for

automated sentiment analysis of social media. In:

IEEE/ACM International Confer ence on advances

in social networks analysis and mining. 2019; pp.

1001–4. https://doi.org/10.1145/3341161.3344821.

[18] Al Asad N, Pranto MAM, Afreen S, Islam MM.

Depression detection by analyzing social media

posts of user. In: IEEE International Conference on

signal processing, information, communication &

systems(SPICSCON). Dhaka, Bangladesh, 2019;

pp. 13–17, https://doi.org/10.1109/

SPICSCON48833.2019.9065101.

[19] Lyua YW, Chow JC-C, Hwang J-J. Exploring

public attitudes of child abuse in mainland China: a

sentiment analysis of China’s social media Weibo.

Child Youth Serv Rev. 2020;116:102520.

[20] Abid F, Li C, Alam M. Multi-source social

media data senti ment analysis using bidirectional

recurrent convolutional neural networks. Comput

Commun. 2020;157:102–15.

[21] Hammou BA, Lahcen AA, Mouline S. Towards

a real-time processing framework based on

improved distributed recurrent neural network

variants with fastText for social big data analytics.

Inf Process Manag. 2020;57:102122.

[22] Tadessi MM, Lin H, Xu B, Yang L. Detection

of depression related posts in reddit social media

forum. IEEE Access. 2019;7:44883–93.

https://doi.org/10.1109/ACCESS.2019. 2909180.

[23] Trotzek M, Koitka S, Friedrich CM. Utilizing

neural networks and linguistic metadata for early

detection of depression indications in text

sequences. IEEE Trans Knowl Data Eng.

2018;32:588–601.

[24] Tariq S, Akhtar N, Afzal H, Khalid S, Mufti

MR, Hussain S, Habib A, Ahmad G. A novel co-

training based approach for the classifcation of

mental illnesses using Social media posts. IEEE

Access. 2019;7:166165–72. https://doi.org/10.1109/

ACCESS.2019.2953087.

[25] Rao G, Zhang Y, Zhang L, Cong Q, Feng Z.

MGL-CNN: a hierarchical posts representations

model for identifying depressed individuals in

online forums. IEEE Access. 2020;8:32395–403.

https://doi.org/10.1109/ACCESS.2020.297373.

http://www.ijsmrt.com/

