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Abstract: Defect prediction is one of the key challenges in software development and programming language research for 

improving software quality and reliability. The problem in this area is to properly identify the defective source code with high 

accuracy. Developing a fault prediction model is a challenging problem, and many approaches have been proposed 

throughout history. The recent breakthrough in machine learning technologies, especially the development of deep learning 

techniques, has led to many problems being solved by these methods. Our survey focuses on the deep learning techniques for 

defect prediction. We analyze the recent works on the topic, study the methods for automatic learning of the semantic and 

structural features from the code, discuss the open problems and present the recent trends in the field.  
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I. INTRODUCTION  

A software defect is, by definition, "an imperfection 

or deficiency in a work product where that work 

product does not meet its requirements or 

specifications and needs to be repaired or replaced," 

according to the IEEE Standard Classification for 

Software Anomalies [1]. Software bugs can result in 

a number of problems. Standard techniques for 

finding software defects include code reviews and 

manual testing. The significant drawback of these 

methods is their high time and energy requirements.  

Using automated techniques for Software Defect 

Prediction is one strategy to save expenses and 

enhance quality in software projects (SDP). For this 

reason, research on software bug prediction is 

essential in the fields of programming languages and 

software engineering. Finding the problematic code 

precisely (both in terms of recall and precision) is 

the aim. The advancement and improvement of 

machine learning has led to the automation of 

solutions for many difficulties. Advances in the 

fields of artificial neural networks and machine 

learning, along with the increasing power of modern 

computers (such supercomputers built on GPUs 

with AI acceleration modules), have given rise to 

new concepts like deep learning.  

The fundamental idea is that complex issues can be 

solved by using a multi-layered artificial neural 

network, which can progressively extract higher-

level properties from the original input. A possible 

answer to the problem of software defect prediction 

is provided by the development of representation-

learning algorithms by researchers, which 

automatically learn semantic representations of 

programs and use this representation to identify the 

code that is prone to errors. It has been demonstrated 

that earlier methods that relied on explicit features—
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like code metrics [2,3]—were not as effective as 

those that used these implicit aspects.  

Software defect prediction is still in its infancy as a 

field, hence state-of-the-art surveys [3-5] only 

include a small portion of the most current research 

on cutting-edge techniques. Recent advances in 

natural language processing (NLP) and related fields 

have produced new, potent tools, such as the 

Transformer language models. These techniques 

were then successfully applied to software 

engineering projects. The goal of our survey is to 

present an overview of these advancements in light 

of the most current primary research that will be 

published in 2019–2021. This survey may be useful 

for scholars and experts in the fields of software 

defect prediction, code interpretation, and related 

fields.  

Certain semantic errors may be difficult to find just 

by looking at the source code. For example, in [6], 

the bytecode of Kotlin programs that have been 

compiled is examined to identify compiler errors. In 

[7], the assembly code—which the compiler 

generates from the C source code—is utilized to 

reveal the behavior of the program and identify its 

flaws. Nevertheless, the main source of information 

for the fault prediction remains the source code. The 

main focus of this overview is on resources and 

techniques for researching program sources. 

Generally, when developing a defect prediction 

model, the subsequent steps are employed: 

Getting source code samples from software project 

repositories is the initial step in preparing the dataset 

(or finding an appropriate existing dataset). Second, 

take functionality out of the code. Use the train 

dataset to teach the model. To evaluate the model's 

effectiveness, run tests on the test dataset. 

 

Figure 1: Scheme of the process of constructing the 

defect prediction model.  

This is how the survey is laid out: In Section 2, we 

briefly outline our survey's methodology. The 

different deep learning approaches used for defect 

prediction are summarized in Section 3. The key 

challenges of the issue are outlined in Section 4. The 

most up-to-date research on defect prediction 

algorithms is presented in Section 5. In the last 

section, we discuss our predictions for the field's 

future. 

2. RESEARCH QUESTIONS  

Let's recap our survey's findings by developing 

some study questions: 

• RQ1: Which deep learning methods have been 

successfully used for predicting software defects?  

• RQ2: To what extent do these important aspects 

contribute to the problem's complexity?  

• RQ3: What tendencies have been seen in the 

foundational work using deep learning for 

predicting software defects?  

• RQ4: What Approaches Have Been Taken So Far?  

We need a representation of the source code in order 

to modify it. Since most machine learning 

algorithms employ vectors, this representation 

should, on the one hand, be as straightforward as 

possible. However, the portrayal must include all 

relevant details. An "embedding" is a numerical 

vector that represents the code itself.  

The code's source may be represented in a number 

of different ways. Furthermore, different 

granularities are required for various purposes, such 

as token-level embedding for code completion and 

function-level embedding for function clone 

detection.  

Subsystem, component, file/class, method, and 

change embeddings are all employed for the 

software defect prediction issue (for more 

information on code embeddings, see [8,9]). The 

vector may be made using the constructed features 

as a starting point. In this method, the best 

characteristics are hand-picked by an expert (see, for 

example, [10,11]). The statistical properties of code, 

such its size, complexity, churn, and process 

metrics, are typical examples. The numerical vector 
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may also be generated by interpreting the code itself. 

The code may be represented in a number of 

different ways.  

Code tokens or characters are the norm [12]. 

Predicting what will come next is a common goal in 

training sequence-based neural networks. Abstract 

syntax trees (AST) [13] are another method for 

representing source code. Statements and operators 

are represented as tree nodes, with operands and 

values as leaves. Tree-based models are taught to 

make code predictions by creating new nodes in the 

tree while taking into consideration the current one. 

Using a classification technique to split the code into 

two groups—defect code and good code—is the 

standard method for defect prediction (see, for 

example, [14]).  

However, methods relying on these hand-crafted 

characteristics often fail to accurately reflect the 

source code's syntax and semantics. If two pieces of 

code have the same structure and complexity but 

implement distinct functions, it might be difficult for 

standard code metrics to tell them apart. Traditional 

properties, such as the number of lines of code, the 

number of function calls, and the number of tokens, 

would stay the same, even if we switched several 

lines in the code fragments (see [2]). Therefore, the 

semantic information is more crucial than these 

measurements for fault prediction.  

Instead than relying on explicitly hand-crafted 

features, modern methods often rely on extraction of 

the source code's implicit structure, syntactic, and 

semantic features. Deep Belief Networks (DBN), 

Convolutional Neural Networks (CNN), Long Short 

Term Memory (LSTM), and Transformer 

architecture are some of the most widely used deep 

learning approaches for software fault prediction. 

3. DEEP BELIEF NETWORKS 

Multi-layered neural networks provide the basis of 

Deep Belief Network generative models [15]. There 

is a single input layer, a single output layer, and 

numerous hidden layers in this network. A feature 

vector, representing the input layer's data, is 

generated by the output layer. The random links 

make up each successive layer. As can be seen in 

Figure 2, the DBN's defining characteristic is that 

nodes only communicate with those in the layers 

above and below them. 

 

Figure 2: Architecture of the Deep Belief Network.  

It's possible that [16] is one of the first attempts to 

combine AST with deep learning. The authors offer 

the method for predicting software defects at the 

level of code modifications. New expressive 

features are generated by the DBN (which is fed by 

the conventional code metrics) and used in the 

standard machine learning classifiers. Relationships 

are derived from conventional code metrics such the 

changed number of modules, folders, files, lines of 

code, and developer experience level. Following 

their success with the decision tree method, the 

authors presented an ensemble learning technique 

called "TLEL" [17].  

Wang et al.'s [2,18] research also make use of the 

DBN, but in a somewhat different context. The 

authors have created a DBN to automatically learn a 

semantic characteristics from the source code, which 

can then be used for defect prediction based on code 

semantics. For both file-level and change-level 

prediction, the AST and source code modifications 

of the programs are utilized as input to the network. 

After extracting characteristics from source code 

files, the authors apply standard machine learning 

classifiers to determine whether or not the files 

include bugs. The fundamental problem with the 

DBN is that it does not accurately reflect the 

sequence in which statements are executed and 

functions are called.  

4. LONG SHORT-TERM MEMORY  

One sort of recurrent neural network designed 

specifically for handling data sequences is the Long 

Short Term Memory [19]. As can be seen in Figure 

3, the LSTM network is built using LSTM nodes. 

http://www.ijsmrt.com/
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The unit's fundamental component is a memory cell, 

which stores values for both short and extended 

periods of time. This enables the LSTM-based 

models to extract the source code's long-range 

context information.  

In work [11], an LSTM-based model was utilized to 

understand the syntactic and semantic components 

of source code. The suggested method converts code 

into a feature vector and a token state encoding the 

token's semantic information by feeding it into a 

Long Short-Term Memory (LSTM) system. A 

further model, the Tree-LSTM, was built using the 

AST format as its input [20].  

In [21], a neural bug-finding approach is presented. 

The authors use a binary classifier, trained using 

samples of both flawed and perfect code, to identify 

errors. The authors use preexisting static bug 

detection tools to classify issues into appropriate 

categories in order to generate a labeled dataset. 

Using the one-hot encoding for each token, the code 

is transformed from its tokens sequence 

representation into a real-value vector. Then, an 

LSTM-based network acting as a model in both 

directions is used. 

 

              Figure 3: Scheme of the LSTM unit 

The authors of [22] offer a model for defect 

prediction based on the representation of AST path 

pairs. The AST route is retrieved as a mixture of 

symbol and control sequence so that the code may 

be processed. A route vector is generated by feeding 

these sequences into a Bi-LSTM network. The 

global attention method is then used to aggregate all 

the vectors into a single one that represents the 

complete code snippet. The completed embedding 

representations are then used as a classification tool.  

5. CONVOLUTIONAL NEURAL NETWORKS  

When it comes to processing data with a mesh-like 

structure, the Convolutional Neural Networks [23] 

are the way to go. There are two distinguishing 

characteristics of this network. First, the network as 

a whole follows the same structure as the local 

nodes' connections. The network is able to learn the 

structural context of the code in the near term. 

Second, all the settings are the same across the 

board. The network may acquire knowledge about 

the code element regardless of where it occurs in the 

code. Figure 4 depicts the overall CNN design. 

                

 

Figure 4: Architecture of the Convolutional Neural 

Network.  

The model using the CNN architecture is shown in 

reference [24]. Token vectors are parsed from the 

AST and then transformed to numbers. Next, a CNN 

is trained using these vectors as input. The retrieved 

semantic and structural variables and code metrics 

are then employed in a logistic regression for 

software fault prediction.  

Commit messages and code modifications are used 

as inputs into a deep learning model that predicts 

errors [25]. In this case, the CNN serves as the basis 

for the model. Convolutional network layers are 

used to analyze the code modifications and commit 

message, and a feature combination network layer 

combines the resulting embedding vectors. We see a 

proposal for yet another deep learning-based model 

for fault prediction. Triplet loss and weighted cross-

entropy loss are used in the training of the neural 

network. As a kind of classifier, the random forest is 

used. 

Machine learning methods that rely on neural 

networks find it difficult to tackle the challenge of 

software fault prediction.  

http://www.ijsmrt.com/
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A. Lack of Data  

The absence of big, publicly accessible labelled 

datasets specifically for fault prediction is a 

significant obstacle. The issue may be solved by 

using the pre-trained contextual embeddings. Using 

the self-supervised goals such masked language 

modelling, next sentence prediction, and substituted 

token recognition, the language model is pre-trained 

on a large unlabeled source code corpus.  

Table 1: presents the popular unlabeled code 

datasets suitable for this task. 

Dataset  Content  Size  Used in 

Tasks 

Bigque

ry 

github 

repos 

[3]  

Python 

source 

code 

4 M 

files 

Pre-training 

CuBERT 

model 

Py150 

[4]  

Python 

source 

code, 

AST 

8423 

repos, 

149,993 

files 

Fine-tuning 

CuBERT 

model 

Js150 

[5]  

Javascrip

t source 

code, 

AST  

150,000 

source 

files  

Code 

Summarizati

on; Defect 

Prediction 

Dataset

s for [6]  

Java 

source 

code  

9500 

projects, 

16 M 

samples 

in the 

largest 

one  

Code 

summarizatio

n 

GitHub 

Java 

Corpus 

[8]  

Java 

source 

code  

11,000 

projects  

Language 

Modelling 

CodeN

N 

Dataset 

[9]  

C# 

source 

code and 

summari

es  

66,015 

fragmen

ts  

Code 

Captioning 

Dataset 

for [6]  

Kotlin 

source 

code, 

AST, 

bytecode  

47,751 

repos, 

932,548 

files, 

4,044,7

90 

function

s  

Anomaly 

detection, 

defect 

prediction 

Dataset 

for [10]  

C# 

source 

code  

29 

projects, 

2.9 M 

lines of 

code  

Variable 

Misuse 

detection 

Smaller labelled datasets may be used to fine-tune 

the pre-trained model for defect prediction. Table 2 

provides a catalogue of open-source datasets for 

defect prediction. These datasets often consist of 

pairs of good and bad snippets of code.  

 Table 2: List of labelled datasets. 

Dataset  Content  Size  Used in 

Tasks 

SEIP 

Lab 

Softwar

e Defect 

Predicti

on Data 

[11]  

Complexi

ty metrics  

5 subsequent 

releases of 3 

projects from 

the Java 

Eclipse 

community  

Data 

collecti

on and 

linking 

PROMI

SE 

Softwar

e 

Enginee

Numeric 

metrics; 

reported 

defects 

15,000 

modules  

Defect 

predicti

on 

http://www.ijsmrt.com/
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ring 

Reposit

ory [12]  

(false/tru

e)  

NASA 

Defect 

Dataset 

[13]  

Numeric 

metrics; 

reported 

defects 

(false/tru

e)  

51,000 

modules  

Defect 

predicti

on 

REPD 

datasets 

[15]  

Numeric 

metrics, 

semantic 

features, 

reported 

defects  

10,885 

fragments in 

the largest 

one  

Defect 

predicti

on 

GPHR 

[16]  

Java code 

and 

metrics  

3526 pairs of 

fragments, 

buggy and 

fixed, code 

metrics  

Defect 

predicti

on 

BugHun

ter [17]  

Java 

source 

code; 

metrics; 

fix-

inducing 

commit; 

number 

of 

reported 

bugs  

159 k pairs 

for 3 

granularity 

levels 

(file/class/m

ethod), 15 

projects 

Analyz

ing the 

importa

nce of 

comple

xity 

metrics 

GitHub 

Bug 

DataSet 

[18]  

Java 

source 

code; 

code 

metrics; 

number 

of 

reported 

bugs and 

15 projects; 

183 k classes  

Bug 

predicti

on 

vulnerabi

lities  

Unified 

Bug 

Dataset 

[19]  

Java 

source 

code; 

code 

metrics; 

number 

of 

reported 

bugs  

47,618 

classes; 

43,744 files  

Bug 

predicti

on  

Neural 

Code 

Translat

or 

Dataset 

[20]  

Pairs of 

buggy 

and fixed 

abstracte

d 

method-

level 

fragment

s 46 k 

pairs of 

small 

fragment

s  

(under 50 

tokens), 50 k 

pairs of 

medium 

fragments 

(under 100 

tokens)  

Code 

refinem

ent 

Real-world code projects sometimes have an uneven 

distribution of classes, which, together with other 

considerations, increases the challenge of creating 

datasets. There are often fewer incorrect files or 

methods than right ones in a project. The result may 

be that the standard classifiers would identify the 

larger group (the proper code) but fail to recognize 

the much smaller group (the defect-prone code). The 

model's performance will suffer as a result of this. 

Several oversampling strategies are presented as a 

means of correcting this discrepancy. The authors 

developed combined methods. It uses Synthetic 

Minority Over-Sampling Methods (SMOTE and 

SMOTUNED) to prepare datasets and ensemble 

methods to sort out bugs and good programs. The 

fraction of accurate and faulty code in each project 

in the dataset is considered by the authors of [22]. 

The components of the smaller class are duplicated 

in order to achieve class balance.  

http://www.ijsmrt.com/
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B. Lack of Context  

The context in which the code exists is also 

problematic. In contrast to natural texts, a code 

element's dependencies may extend to neighboring 

code fragments or even farther afield. It is also 

frequently difficult to determine whether the code 

piece is flawed without knowing the larger context 

in which it is used. It may be challenging to distil the 

core of a defect from a dataset that consists of pairs 

of bugged and corrected code snippets.  

The Transformer network-based methods were 

developed for natural language processing issues 

characterized by a high degree of locality of 

reference in the underlying data. A token's 

immediate surroundings reveal a great deal about it. 

As a result, such models often interpret the code's 

source as a list of tokens.  

5. CONCLUSIONS  

Predicting faulty code is a key obstacle in the field 

of software engineering today. Recently developed 

multi-layered neural networks and deep learning 

algorithms offer potent ways for representing source 

code in a way that captures its semantic and 

structural information using learning algorithms.  

Using deep learning approaches, such as the 

Transformer architectures, this survey details the 

most recent findings in software fault prediction 

research. We identify the primary challenges of the 

defect prediction problem as an absence of data and 

a high degree of contextual complexity, and we 

propose potential solutions to these issues.  

We think that the following concepts, which take 

into consideration the most recent developments in 

machine learning approaches for the software defect 

prediction issue, will contribute significantly to the 

advancement of this discipline.  

• Self-supervised training on vast corpora of 

unlabeled data may be used to minimize the size of 

the required labelled datasets. In addition, the 

unlabeled data must be used for the pre-training of 

associated tasks, which contributes to the trained 

models' enhanced depth and breadth of knowledge 

of the original code. As a result, the underlying flaws 

may be identified.  

• We are currently seeing the effective translation of 

these approaches to tackle diverse code 

comprehension challenges, capitalizing on the most 

recent breakthroughs in machine learning 

techniques in natural language processing in 

programming languages. To better consider the code 

context while searching for faults, one may optimize 

the transformers' self-attention mechanism so that 

they can be used across extended sequences.  

• It's fairly uncommon for bugs to affect many 

related functions or lines of code, and to have 

multiple potential solutions. It's possible, for 

instance, to correct a defect either inside the function 

itself or at the point when it's called. As a result, the 

error can no longer be located at a particular line 

number in the source code. Even if a bug isn't 

initially present in a single line of code, it may 

become a defect later on. The original 

implementation may no longer be suitable due to the 

fact that the code's original intent has changed as a 

result of new circumstances.  

The idea of a flaw becomes muddled as a result of 

all this. The terms "potentially defective" and 

"strange" code are so introduced. Finding an unusual 

code and honing existing ones are two examples of 

interesting challenges in this area. Good 

representations of the code and updates to the code, 

taking into consideration the structure and context of 

the source code, are necessary for these tasks.  

Identifying a best-performing state-of-the-art model 

is challenging. There are no agreed-upon, industry-

wide measures by which this issue is measured, and 

academics are using a wide variety of measurements 

and datasets in their investigations. As a 

consequence, comparing the experimental outcomes 

of the foundational papers is problematic. While 

state-of-the-art deep learning algorithms often 

outperform baseline deep learning and classic 

metrics-based ones (achieving the rise of F1 from 

60% to 80% in certain circumstances), extant 

comparative studies such as suggest otherwise. No 

method provides a level of reliability in recall, 

precision, and accuracy that is adequate for real-

world use. Defect prediction is therefore still an 

unsolved issue. 
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