
                     International Journal of Scientific Modern Research and Technology                                                ISSN: 2582-8150  
                     (Volume: 12, Issue: 1, Number: 4) Paper ID: IJSMRT-23120104 

 

IJSMRT|July-2023                                          www.ijsmrt.com                                                                  Page 19  

Software Defect Prediction using Deep 

Learning: Systematic Literature Review 
Swati Rai1, Dr. Pinaki Ghosh2, Dr. Gourav Shrivastava3, Dr. Kirti Jain4  

1Research Scholar, 2Head and Professor, 3Associate Professor, 4Associate Professor  

SSAC, SAGE University, Bhopal, India 

  

Abstract - Defect prediction is one of the key challenges in software development and programming language research for 

improving software quality and reliability. The problem in this area is to properly identify the defective source code with high 

accuracy. Developing a fault prediction model is a challenging problem, and many approaches have been proposed throughout 

history. The recent breakthrough in machine learning technologies, especially the development of deep learning techniques, has 

led to many problems being solved by these methods. Our survey focuses on the deep learning techniques for defect prediction. We 

analyze the recent works on the topic, study the methods for automatic learning of the semantic and structural features from the 

code, discuss the open problems and present the recent trends in the field.  

Keywords: defect prediction; anomaly detection; program analysis; code understanding; neural networks; deep learning  

IJSMRT-23120103 

 

I. INTRODUCTION 

According to the IEEE Standard Classification for 

Software Anomalies [1], a software defect is “an 

imperfection or deficiency in a work product where 

that work product does not meet its requirements or 

specifications and needs to be either repaired or 

replaced”. Software defects can cause different 

problems. Common ways to find software defects are 

manual testing and code review. The main drawback 

of these methods is that they are quite expensive in 

terms of time and effort.  

The automatic approaches to the Software Defect 

Prediction (SDP) would allow one to reduce the costs 

and improve quality of the software projects. Thus, 

Software Defect Prediction is an important problem in 

the fields of the software engineering and 

programming language research. The task is to 

identify the defective code with high accuracy (in 

terms of the precision and recall). The development 

and breakthrough of machine learning led to the fact 

that many tasks can be solved by the these methods. 

Recent advances in the fields of artificial neural 

networks and machine learning, as well as the 

increasing power of the modern computers (such as 

supercomputers based on GPUs with AI accelerating 

modules), allowed new concepts, such as deep 

learning, to emerge.  

The main idea is that an artificial neural network with 

multiple layers is capable of progressively extracting 

the higher-level features from the original data to solve 

complex problems. For the problem of software defect 

prediction, the researchers have proposed the 

representation-learning algorithms to learn semantic 

How to cite this article: Swati Rai, Dr. Pinaki Ghosh, Dr. Gourav Shrivastava, Dr. Kirti Jain 

“Software Defect Prediction using Deep Learning: Systemic Literature Review" Published in 

International Journal of Scientific Modern Research and Technology (IJSMRT), ISSN: 2582-8150, 

Volume-12, Issue-1, Number 4, July 2023, pp.19-31, URL: www.ijsmrt.com/wp-

content/uploads/2023/08/IJSMRT-23120104.pdf 

Copyright © 2023 by author (s) and International Journal of Scientific Modern Research and 

Technology Journal.  This is an Open Access article distributed under the terms of the Creative 

Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0/) 

 

http://www.ijsmrt.com/
http://www.ijsmrt.com/wp-content/uploads/2023/08/IJSMRT-23120104.pdf
http://www.ijsmrt.com/wp-content/uploads/2023/08/IJSMRT-23120104.pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


                     International Journal of Scientific Modern Research and Technology                                                ISSN: 2582-8150  
                     (Volume: 12, Issue: 1, Number: 4) Paper ID: IJSMRT-23120104 

 

IJSMRT|July-2023                                          www.ijsmrt.com                                                                  Page 20  

representations of programs automatically and use this 

representation to identify the defect-prone code. Using 

these implicit features shows better results than the 

previous approaches based on the explicit features, 

such as the code metrics [2].  

The software defect prediction is a rapidly developing 

field, and the state-of-the-art surveys on the topic [3–

5] do not sufficiently cover the recent works 

describing the cuttingedge techniques. For example, 

recent advances in the related fields of Natural 

Language Processing (NLP) provided new powerful 

tools such as Transformer language models. These 

techniques were later successfully applied to the 

software engineering tasks. The goal of our survey is 

to describe these latest achievements taking into 

account the newest primary studies published in 2019–

2021. We hope that this survey can be useful for 

researchers and practitioners in the software defect 

prediction, code understanding and other related 

fields.  

Some semantic defects are hard to find using only 

source code. For example, in [6], the bytecode of 

Kotlin programs is processed to detect the so called 

compiler-induced anomalies, which arise only in the 

compiled bytecode. Another example is presented in 

[7] where to expose the program behavior, the 

assembly code (generated from the C source code by 

the compiler) is used to learn the defect features. 

Nevertheless, the source code remains the main source 

of data for the defect prediction. In this survey, our 

main interest lies in techniques devoted to analyze the 

source code. Usually, the process of developing the 

model for the defect prediction consists of the 

following steps (see Figure 1):  

1. Prepare the dataset by collecting the source code 

samples from repositories of the software projects (or 

choose the suitable existing dataset).  

2. Extract features from the source code.  

3. Train the model using the train dataset.  

4. Test the model using the test dataset and assess the 

performance using the quality metrics. 

 

Figure 1: Scheme of the process of constructing the 

defect prediction model.  

The survey is structured as follows: Section 2 briefly 

describes the methodology of our survey. Section 3 

presents the overview on the various deep learning 

techniques applied to the defect prediction. In Section 

4, we outline the main difficulties of the problem. 

Section 5 presents the study of the latest trends in the 

techniques and methods for defect prediction. Section 

6 concludes the study and offers our vision on the 

future developments on the field. 

 

II. RESEARCH QUESTIONS 

To summarize the work of our survey, let us formulate 

the following research questions: 

• RQ1. What deep learning techniques have been 

applied to software defect prediction?  

• RQ2. What are the key factors contributing to the 

difficulty of the problem?  

• RQ3. What are the trends in the primary studies on 

the use of deep learning for the software defect 

prediction? 

 

A. RQ1. What Techniques Have Been Applied to This 

Problem?  

In order to work with the source code, we need to have 

its representation. On the one hand, this representation 

should be simple as a vector, since most machine 

learning algorithms work with vectors. On the other 

hand, the representation should contain all the 

necessary information. The numerical vector 

representing the source code is called an “embedding”.  

http://www.ijsmrt.com/


                     International Journal of Scientific Modern Research and Technology                                                ISSN: 2582-8150  
                     (Volume: 12, Issue: 1, Number: 4) Paper ID: IJSMRT-23120104 

 

IJSMRT|July-2023                                          www.ijsmrt.com                                                                  Page 21  

There are different ways to represent the source code. 

Moreover, we need different granularities for different 

tasks, for example, for code completion we need 

token-level embedding and for function clone 

detection we need function embedding.  

For the software defect prediction problem, various 

levels of granularity are used, such as sub-system, 

component, file/class, method and change (see [8,9] 

for more info on various code embeddings). One way 

is to create the vector from the hand-crafted features. 

This approach assumes that an expert invents a set of 

features and selects best of them (e.g., [10,11]). 

Usually, these features include the statistical 

characteristics of code, such as its size, code 

complexity, code churn or process metrics. Another 

way is to create the numerical vector by processing the 

source code. One way to represent the code is a 

sequence of elements.  

Usually, they are code tokens or characters [12]. The 

neural networks based on the sequences are usually 

trained to predict the subsequent element. Another 

approach to build the representation of the source code 

is the abstract syntax trees (AST) [13]. The nodes of 

the tree correspond to the statement and operators, and 

the leaves represent the operands and values. The tree-

based models are trained to predict the code by 

generating new nodes taking into account the existing 

tree structure. The most common approach to defect 

prediction is to use some classification algorithm to 

divide the source code into two categories: defect code 

and correct one (e.g., [14]).  

However, the approaches based on the hand-crafted 

features usually do not sufficiently capture the syntax 

and semantics of the source code. Most traditional 

code metrics cannot distinguish code fragments if 

these fragments have the same structure and 

complexity but implement a different functionality. 

For example, if we switch several lines in the code 

fragments, traditional features, such as the number of 

lines of code, number of function calls and number of 

tokens, would remain the same (see [2]). Thus, the 

semantic information is more important for defect 

prediction than these metrics.  

Modern approaches are usually based on extracting the 

implicit structural, syntax and semantic feature from 

the source code rather than using the explicit hand-

crafted ones. The most popular deep learning 

techniques for software defect prediction are: Deep 

Belief Networks (DBN), Convolutional Neural 

Networks (CNN), Long Short-Term Memory 

(LSTM), and Transformer architecture. 

(i) Deep Belief Networks 

Deep Belief Network [15] generative models are based 

on a multilevel neural network. This network contains 

one input layer, one output layer and multiple hidden 

layers. The output layer generates a feature vector 

representing the data fed to the input layer. Each layer 

consists of the stochastic nodes. The important feature 

of the DBN is that the nodes are only connected to the 

nodes in the adjacent layers but not to the nodes within 

the same layer as shown in Figure 2.  

 

Figure 2: Architecture of the Deep Belief Network.  

Perhaps one of the first works combining AST with the 

deep learning is [16]. The authors propose the 

approach for software defect prediction on a changes 

level. The DBN (which is fed by the traditional code 

metrics) generates the new expressive features and use 

them in classical machine learning classifiers. They 

extract the relations from the traditional code metrics, 

such as number of modified modules, directories and 

files, added and deleted lines, and several features 

related to the developer’s experience. Later, the 

authors proposed the “TLEL” approach [17] based on 

the decision tree and ensemble learning for 

classification.  

The works of Wang et al. [2,18] also use the DBN, but 

in a different manner. For predicting the defects on the 

basis of the code semantics, the authors have 

developed a DBN to automatically learn a semantic 

features from the source code. As the input for the 

network, the programs’ AST and source code changes 

http://www.ijsmrt.com/


                     International Journal of Scientific Modern Research and Technology                                                ISSN: 2582-8150  
                     (Volume: 12, Issue: 1, Number: 4) Paper ID: IJSMRT-23120104 

 

IJSMRT|July-2023                                          www.ijsmrt.com                                                                  Page 22  

are used for the cases of file-level and change-level 

prediction, respectively. Then, the authors use the 

classical machine learning classifiers and extracted 

features to classify source code files whether they are 

buggy or clean. The main drawback of the DBN is that 

it does not sufficiently capture the context of the code 

elements, such as the order of statement execution and 

function calls.  

(ii) Long Short-Term Memory  

The Long Short-Term Memory [19] is a subtype of the 

recurrent neural network specialized for processing the 

data sequences. The LSTM network consists of LSTM 

units (see Figure 3). The key element of the unit is a 

memory cell, which allows the unit to store the values 

for a short, as well as, for a long time intervals. This 

provides the LSTM-based models the ability to 

capture the long-range context information from the 

source code.  

The LSTM-based model was used in work [11] for 

learning both the semantic and syntactic features of 

code. The proposed approach represents the code as a 

sequence of code tokens, which is fed into a LSTM 

system to transform code into a feature vector and a 

token state representing the semantic information of 

the token. Later the Tree-LSTM model was developed 

using the AST representation as input [20].  

A neural bug finding technique is proposed in [21]. 

The authors train a neural network on examples of the 

defective and correct code, and then use the resulting 

binary classifier for bug detection. To prepare a 

labeled dataset, the authors use the existing static bug 

detection software to identify the specific kind of bugs. 

The code is represented as a tokens sequence and 

converted to a real-value vector by using the one-hot 

encoding for each token. Then, a bi-directional 

network with LSTM is used as model. 

 

Figure 3: Scheme of the LSTM unit.  

In [22], the authors propose a model for defect 

prediction on the base of AST path pair representation. 

To process the code, the path in the AST is extracted 

as combination of symbol sequence and control 

sequence. These sequences are fed to a Bi-LSTM 

network to generate a path vector. Then, all the vectors 

are combined using the global attention technique to 

generate the vector for the entire code fragment. These 

final embedding representations are used for 

classification.  

(iii) Convolutional Neural Networks  

The Convolutional Neural Networks [23] are a type of 

neural network specialized for processing the data 

with a mesh-like structure. This network is 

characterized by two important features. Firstly, the 

local connection pattern between the units is repeated 

over the entire network. It allows the network to 

capture the short-term structural context of the source 

code. Secondly, each unit have the same parameters. It 

allows the network to learn the information on the code 

element irrespective of its position in the code. The 

scheme of general CNN is shown in Figure 4. 

 

Figure 4: Architecture of the Convolutional Neural 

Network.  

Reference [24] presents the model based on the CNN 

architecture. Based on the program’s AST, the token 

vectors are extracted and converted to numerical 

vectors. Then, these vectors are fed into a CNN. After 

that, the combination of the extracted semantic and 

structural features and code metrics is used for 

software defect prediction applying the logistic 

regression.  

A deep learning model to predict defects on the basis 

of the commit messages and code changes is 

developed in [25]. This model is based on the CNN. It 

uses the convolutional network layers for processing 

http://www.ijsmrt.com/


                     International Journal of Scientific Modern Research and Technology                                                ISSN: 2582-8150  
                     (Volume: 12, Issue: 1, Number: 4) Paper ID: IJSMRT-23120104 

 

IJSMRT|July-2023                                          www.ijsmrt.com                                                                  Page 23  

the code changes and commit text and the feature 

combination layer to fuse these two embedding 

vectors into a single one. Another deep learning-based 

model for defect prediction is proposed in [26]. The 

training of the neural network utilizes the triplet loss 

technique and the weighted cross-entropy loss 

technique. The random forest is used as a classifier. 

In [27], the features learning technique based on CNN 

is proposed. This model extract features from token 

vectors in the AST of the code and learns the 

transferable joint features. Combining these deep-

learning-generated features with the hand-crafted ones 

allows the model to perform the cross-project defect 

prediction. Later, the authors propose a new treebased 

convolutional network to perform this task [28]. It uses 

the tree-based continuous bag-of-word for encoding 

the AST nodes to be fed into CNN.  

(iv) Transformer Models  

Recently, the big success of pre-trained contextual 

representations in the NLP, for example, [29], led to a 

rise of attempts to apply these techniques to source 

code. Usually, these models are based on the multi-

layer Transformer architecture [30] shown in Figure 5. 

They are pre-trained using the massive unlabeled 

corpora of programs with the self-supervised 

objectives, such as masking language modelling and 

next sentence prediction [31,32]. After the pre-training 

phase, the model can be fine-tuned for specific tasks 

using the supervised techniques. 

 

Figure 5: Architecture of the multi-layer transformer.  

The authors of [33] state that the approaches based on 

the traditional complexity metrics are useless since 

there is no need for a tool to tell the engineer that 

longer and more complex code is more defect-prone. 

The methods of learning features from the source code 

do not guarantee capturing semantic and syntactical 

similarity, and very similar source codes can have very 

different features. These features can correlate with 

defects rather than directly cause them. In contrast, the 

authors propose an approach based on the self-

attention transformer encoder to the semantic defect 

prediction. The matrix representing the defectiveness 

of each token in the fragment is generated. Attention 

and layer normalization are used as a regularization 

technique. The resulting model provides the defect 

prediction with the semantic highlight of defective 

code regions.  

The CuBERT model is presented in [31]. The authors 

use a corpus of Python files from the GitHub to create 

a benchmark for evaluating code embeddings on five 

classification tasks and a program repair task. They 

train their model and compare it with various other 

models including the BiLSTM and Transformer. It is 

shown that the CuBERT outperforms the baseline 

models consistently.  

A bimodal language model called CodeBERT is 

presented in [32]. It is based on the multilayer 

bidirectional Transformer neural architecture. To 

prepare the data, the natural language text is 

represented as a sequence of words, and the source 

code is presented as a sequence of tokens. The output 

of the CodeBERT model is a contextual vector learned 

from the natural language and source code, as well as 

the aggregated sequence. The resulting model 

efficiently solves the problems of both code to the 

documentation and natural language code search.  

Work [34] presents a multi-layer bidirectional 

transformer architecture GraphCode-BERT, which 

utilizes three components as input: the source code, 

paired comments and data flow graph. Data flow graph 

represents relations between variables, for example, 

where the value of a variable comes from. This allows 

the model to consider the code structure for code 

representation. For pre-training tasks, the traditional 

masked language modeling, as well as the edge 

prediction and node alignment of data flow graph were 

http://www.ijsmrt.com/


                     International Journal of Scientific Modern Research and Technology                                                ISSN: 2582-8150  
                     (Volume: 12, Issue: 1, Number: 4) Paper ID: IJSMRT-23120104 

 

IJSMRT|July-2023                                          www.ijsmrt.com                                                                  Page 24  

used. It supports several downstream code-related 

tasks including the code clone detection, code 

translation and code refinement. 

(v) Other Networks  

In [35], a software defect prediction technique based 

on stacked denoising autoencoders model is presented. 

The stacked denoising autoencoder is used to extract 

higher level features from the traditional metrics. The 

two-stage ensemble learning is used for classification. 

To address the class imbalance, the authors use the 

ensemble learning strategy. Later, the feature selection 

algorithm was applied to this method to address the 

feature redundancy problem [36].  

A model for the software defect prediction was 

constructed in work [37] on the base of the Siamese 

parallel fully-connected networks. This model utilizes 

the paired parallel Siamese networks architecture and 

the deep learning approach. The network produces the 

high-level features that are used for classification. To 

address the imbalance between the minority and 

majority classes, the network takes into account the 

cost-sensitivity features.  

The neural forest networks are used to learn feature 

representations in [38]. To perform a classification, a 

decision forest is used. It also guides the learning of 

the neural network. In [39], a new deep forest model is 

proposed for the software defect prediction. To detect 

the essential defect features, it uses the cascade 

learning strategy, which consists in reforming a set of 

the random forest classifiers into a layered network.  

The graph neural network to predict the software 

defects is constructed in work [40]. It extracts the 

semantics and context features from the AST of the 

code fragments. To capture the defect-related 

information from the source code, the ASTs for the 

buggy and fixed version of a fragment are constructed 

and pruned using the community detection algorithm, 

which extracts the defect-related subtree. Then, the 

Graph Neural Network is used to capture the latent 

defect information.  

B. RQ2. What Are the Key Factors Contributing to 

Difficulty of the Problem?  

The problem of software defect prediction is 

considered very complex and very challenging for the 

machine learning models based on the neural 

networks.  

(i) Lack of Data  

One of the difficulties is lack of available large 

labelled datasets devoted to the defect prediction. To 

alleviate this problem, one can utilize the pre-trained 

contextual embeddings. This technique consists in pre-

training the language model on a massive corpora of 

unlabeled source code using the self-supervised 

objectives, such as masked language modelling, next 

sentence prediction and replaced token detection.  

 

Table 1: presents the popular unlabeled code datasets suitable for this task. 

Dataset  Content  Size  Used in Tasks 

Bigquery github repos 

[3]  

Python source code 4 M files Pre-training CuBERT 

model 

Py150 [4]  Python source code, 

AST 

8423 repos, 149,993 

files 

Fine-tuning CuBERT 

model 

http://www.ijsmrt.com/


                     International Journal of Scientific Modern Research and Technology                                                ISSN: 2582-8150  
                     (Volume: 12, Issue: 1, Number: 4) Paper ID: IJSMRT-23120104 

 

IJSMRT|July-2023                                          www.ijsmrt.com                                                                  Page 25  

Js150 [5]  Javascript source code, 

AST  

150,000 source files  Code Summarization; 

Defect Prediction 

Datasets for [6]  Java source code  9500 projects, 16 M 

samples in the largest 

one  

Code summarization 

GitHub Java Corpus [8]  Java source code  11,000 projects  Language Modelling 

CodeNN Dataset [9]  C# source code and 

summaries  

66,015 fragments  Code Captioning 

Dataset for [6]  Kotlin source code, 

AST, bytecode  

47,751 repos, 932,548 

files, 4,044,790 

functions  

Anomaly detection, 

defect prediction 

Dataset for [10]  C# source code  29 projects, 2.9 M lines 

of code  

Variable Misuse 

detection 

The pre-trained model may then be fine-tuned for the 

defect prediction using much smaller labeled datasets. 

Table 2 presents a list of publicly available datasets 

devoted to the defect prediction. Usually, such datasets 

include pairs of correct and defective code fragments

 

Table 2: List of labeled datasets. 

Dataset  Content  Size  Used in Tasks 

SEIP Lab Software 

Defect Prediction Data 

[11]  

Complexity metrics  5 subsequent releases of 

3 projects from the Java 

Eclipse community  

Data collection and 

linking 

PROMISE Software 

Engineering Repository 

[12]  

Numeric metrics; 

reported defects 

(false/true)  

15,000 modules  Defect prediction 

http://www.ijsmrt.com/


                     International Journal of Scientific Modern Research and Technology                                                ISSN: 2582-8150  
                     (Volume: 12, Issue: 1, Number: 4) Paper ID: IJSMRT-23120104 

 

IJSMRT|July-2023                                          www.ijsmrt.com                                                                  Page 26  

NASA Defect Dataset 

[13]  

Numeric metrics; 

reported defects 

(false/true)  

51,000 modules  Defect prediction 

REPD datasets [15]  Numeric metrics, 

semantic features, 

reported defects  

10,885 fragments in the 

largest one  

Defect prediction 

GPHR [16]  Java code and metrics  3526 pairs of 

fragments, buggy and 

fixed, code metrics  

Defect prediction 

BugHunter [17]  Java source code; 

metrics; fix-inducing 

commit; number of 

reported bugs  

159 k pairs for 3 

granularity levels 

(file/class/method), 15 

projects 

Analyzing the 

importance of 

complexity metrics 

GitHub Bug DataSet 

[18]  

Java source code; code 

metrics; number of 

reported bugs and 

vulnerabilities  

15 projects; 183 k 

classes  

Bug prediction 

Unified Bug Dataset 

[19]  

Java source code; code 

metrics; number of 

reported bugs  

47,618 classes; 43,744 

files  

Bug prediction  

Neural Code Translator 

Dataset [20]  

Pairs of buggy and 

fixed abstracted 

method-level fragments 

46 k pairs of small 

fragments  

(under 50 tokens), 50 k 

pairs of medium 

fragments (under 100 

tokens)  

Code refinement 

As with the other factors affecting the difficulty of 

constructing datasets, we can highlight that the 

distribution of the classes in the real code projects is 

often imbalanced. Usually, there are fewer buggy files 

or methods in a project than the correct ones. This may 

lead to the situation where the common classifiers 

would correctly detect the major class (correct code) 

and ignore the much smaller class of the defect-prone 

code. This will lead to bad performance of the model. 

To address this imbalance, several oversampling 

methods are proposed. The authors constructed hybrid 

approaches. It is based on the Synthetic Minority 

Over-Sampling Technique (SMOTE and 

SMOTUNED) for preparing the datasets and ensemble 

http://www.ijsmrt.com/


                     International Journal of Scientific Modern Research and Technology                                                ISSN: 2582-8150  
                     (Volume: 12, Issue: 1, Number: 4) Paper ID: IJSMRT-23120104 

 

IJSMRT|July-2023                                          www.ijsmrt.com                                                                  Page 27  

approaches for classifying the defective and correct 

code. In [22], the authors takes into account the 

proportion of the correct and defective code in each 

project in the dataset. To balance the classes, they 

duplicate the elements of the smaller class.  

(ii) Lack of Context  

Another problem is the complexity of the context for 

the code. Unlike the natural texts, the code element 

may depend on another element located far away, 

maybe, even in another code fragment. Moreover, it is 

often hard to say if the code element is defective 

without considering its context. If dataset consists of 

the pairs of bugged and fixed code fragments, it is 

often hard to extract the essence of defect.  

Approaches based on the Transformer networks were 

aimed to NLP problems where data display a great deal 

of locality of reference. Most information about a 

token can be derived from its neighboring tokens. 

Thus, most such models represent the source code as a 

sequence of tokens.  

The traditional Transformer architectures based on 

self-attention matrices do not scale well because of 

quadratic complexity. Usually, they are designed to 

handle the input sequences with limited length 

(usually, 512 or 1024 tokens). Therefore, their 

applicability to understanding the context of the source 

code is limited.  

There are several modifications to the Transformer 

architecture that improve its ability to comprehend 

long sequences. These approaches alleviate the 

problem of limited length of the input, giving the 

Transformers the potential to work with a complex 

context of the source code. Another approach is to 

capture the structural and global relations on the code, 

combining the sequence-based and graph-based 

models for code representation [34]. Thus, 

representing the code context is essential in the 

software defect prediction. 

C. RQ3. What Are the Trends in the Primary Studies 

on the Use of Deep Learning for the Software Defect 

Prediction?  

The earliest works, such as [16], utilize the deep 

learning techniques trying to extract the implicit 

features from the traditional explicit features (such as 

code metrics). The main drawback of this approach is 

that these traditional features usually cannot capture 

the semantic difference between the correct and 

defective code. Therefore, the combination of these 

features would also fail to do this [24].  

Later approaches [20,25] use the generic or tailored 

deep learning techniques to extract the semantic and 

syntactic features directly from the source code, 

usually, from the abstract syntax trees. These deep 

learned features are used in combination with the 

traditional ones in the machine classifiers to produce 

the accurate defect prediction.  

Modern software development often prioritize writing 

the human-readable source code. This includes using 

the meaningful names for the functions and variables 

and writing the code documentation in natural 

language. This leads to a situation where we can 

extract the semantic information from the source code 

using the techniques originally intended for the NLP, 

such as the pre-trained language representations such 

as BERT [7].  

Learning useful models with supervised setting is 

often difficult because labelled data are usually 

limited. Thus, many unsupervised approaches have 

been proposed recently to utilize the large unlabelled 

datasets that are more readily available. Usually, this 

means that pre-training is performed with automatic 

supervisions without manual annotation of the 

samples. Then, the model may be fine-tuned for the 

specific task using much smaller supervised data [31].  

The most recent techniques in software engineering 

are based on using the general purposed pre-trained 

models for programming languages [34]. These 

models learn to “understand” the source code from 

unlabelled datasets using the self-supervised 

objectives. A large corpus of source code is used for 

pre-training. Usually, the objective is the Masked 

Language Modelling where at some positions the 

tokens are masked out and the model must predict the 

original token [32]. Utilizing these techniques 

alleviates the need for the task-specific architectures 

http://www.ijsmrt.com/


                     International Journal of Scientific Modern Research and Technology                                                ISSN: 2582-8150  
                     (Volume: 12, Issue: 1, Number: 4) Paper ID: IJSMRT-23120104 

 

IJSMRT|July-2023                                          www.ijsmrt.com                                                                  Page 28  

and training on large labelled datasets for each task 

separately. 

                          III. CONCLUSIONS 

One of the major challenges in modern software 

engineering is predicting defective code. Recent 

developments in the field of machine learning, 

especially the multi-layered neural networks and deep 

learning algorithms, provide powerful techniques, 

which utilize learning algorithms for representations 

of the source code that captures semantic and 

structural information.  

This survey presents the latest research progress in 

software defect prediction using the deep learning 

techniques, such as the Transformer architectures. We 

formulate the main difficulties of the defect prediction 

problem as lack of data and complexity of context and 

discuss the ways to alleviate these problems.  

Taking into account the latest trends in the machine 

learning techniques for the software defect prediction 

problem, we believe that progress in this field will be 

achieved largely due to the implementation of the 

following ideas.  

• To reduce the requirements for the size of the labelled 

datasets, one should use the self-supervised training on 

large corpora of the unlabelled data. In addition, it is 

necessary to use the unlabelled data for the pre-

training of related tasks and to contribute to the fact 

that the trained models will have a deeper and more 

comprehensive understanding of the source code. 

This, in the turn, will allow one to find the deeper 

defects.  

• To leverage the latest advances in the machine 

learning techniques in the natural language processing 

in the programming languages, we are already seeing 

the successful migration of these methods to solve 

various code understanding problems. For example, 

optimization of the self-attention mechanism for the 

transformers will allow one to use them for long 

sequences, which, in the turn, will lead to a more 

complete consideration of the code context for finding 

the defects.  

• Often a defect is not limited to a single line of code 

or one function, and there are various ways to fix it. 

For example, a bug can be fixed either inside the 

function or at calling this function. Thus, the defect 

ceases to have specific coordinates inside the source 

file. In addition, not being an explicit defect, a line of 

code can become defective at a certain point in time. 

A changed context may lead to the fact that the 

purpose of the code changes, and, therefore, the old 

implementation no longer corresponds to the new 

requirements or specifications.  

All this leads to a blurring of the concept of a defect. 

Thus, we come to the concepts of “potentially 

defective” code or “strange” code. In this regard, as 

promising problems, we want to note the task of 

finding an atypical (or anomalous) code and the task 

of the code refinement. These task require good 

representations of the code and code changes, taking 

into account the specifics of the source code, such as 

structure and context.  

It is difficult to state which of the state-of-the-art 

models performs in the best way. There are no 

universally accepted standard benchmarks for the 

problem and different researchers utilize different 

performance metrics and use different data. Thus, the 

experimental results from the primary works cannot be 

directly compared. The existing comparative studies 

such as show that while the state-of-the-art deep 

learning techniques usually perform better than 

standard deep learning and traditional metrics-based 

ones (achieving the increase of F1 from 60% up to 

80% in some cases). None of the approaches achieves 

a consistently high performance in terms of recall, 

precision and accuracy sufficient for the practical 

application. Thus, the defect prediction problem 

remains an open one. 

 

REFERENCES 

[1] Jitimon Angskun, Suda Tipprasert and Thara 

Angskun, “Big data analytics on social networks 

for realtime depression detection”, Journal of Big 

Data, 2022. 

[2] Md. Rafidul Hasan Khan; Umme Sunzida 

Afroz; Abu Kaisar Mohammad Masum; Sheikh 

http://www.ijsmrt.com/
https://ieeexplore.ieee.org/author/37088532867
https://ieeexplore.ieee.org/author/37088532829
https://ieeexplore.ieee.org/author/37088532829
https://ieeexplore.ieee.org/author/37087139108
https://ieeexplore.ieee.org/author/37086143335


                     International Journal of Scientific Modern Research and Technology                                                ISSN: 2582-8150  
                     (Volume: 12, Issue: 1, Number: 4) Paper ID: IJSMRT-23120104 

 

IJSMRT|July-2023                                          www.ijsmrt.com                                                                  Page 29  

Abujar; Syed Akhter Hossain, “Sentiment Analysis 

from Bengali Depression Dataset using Machine 

Learning”, 11th International Conference on 

Computing, Communication and Networking 

Technologies (ICCCNT), 2020. 

[3] Tanna D, Dudhane M, Sardar A. Deshpande K, 

Deshmukh N., “Sentiment analysis on social media for 

emotion classification”, In: International Conference 

on intelligent computing and control systems, 2020. 

[4] Md Kamrul Hasan, Hasan Mahmud, Ahmed Al 

Marouf, “Comparative Analysis of Feature Selection 

Algorithms for Computational Personality Prediction 

From Social Media”, IEEE Transactions on 

Computational Social Systems, 2020. 

[5] Yang X, McEwen R, Ong LR, Zihayat M., “A big 

data analytics framework for detecting user-level 

depression from social networks”, Int J Inf Manag. 

2020. 

[6] Lyua YW, Chow JC-C, Hwang J-J, “Exploring 

public attitudes of child abuse in mainland China: a 

sentiment analysis of China’s social media”, Weibo. 

Child Youth Serv Rev. 2020. 

[7] Chen B, Cheng L, Chen R, Huang Q, Phoebe Chen 

Y-P. Deep neural networks for multiclass sentiment 

classification. In: IEEE 20th International Conference 

on high performance computing and communications, 

IEEE 16th International Conference on Smart City, 

IEEE 4th International Conference on Data Science 

and Systems 2018; pp. 854–59.  

[8] Sethi M, Pande S, Trar P, Soni P. Sentiment 

identification in COVID-19 specifc tweets. In: 

International Conference on electronics and 

sustainable communication systems (ICESC 2020), 

pp. 509–16, 

https://doi.org/10.1109/ICESC48915.2020.9155674.  

[9] Kundale JU, Kulkarni NJ. Language independent 

multi-class sentiment analysis. In: 5th International 

Conference on computing communication control and 

automation (ICCUBEA), 2019; pp. 1–7, 

https://doi.org/10.1109/ICCUBEA47591.2019.91283

83.  

[10] Ruz GA, Henriquez PA, Mascareno A. Sentiment 

analysis of Twitter data during critical events through 

Bayesian networks classifers. Future Gener Comput 

Syst. 2020;106:92–104.  

[11] Yang X, McEwen R, Ong LR, Zihayat M. A big 

data analytics framework for detecting user-level 

depression from social networks. Int J Inf Manag. 

2020;54:102141.  

[12] Tao X, Dharmalingam R, Zhang J, Zhou X, Li L, 

Gururajan R. Twitter analysis for depression on social 

networks based on sentiment and stress. In: 6th 

International Conference on behavioral, economic and 

socio-cultural computing, 2019; pp. 1-4, https:// 

doi.org/10.1109/BESC48373.2019.8963550.  

[13] Tanna D, Dudhane M, Sardar A. Deshpande K, 

Deshmukh N. Sentiment analysis on social media for 

emotion classifcation. In: International Conference on 

intelligent computing and control systems (ICICCS 

2020), pp. 911–15, https://doi.org/10.1109/ 

ICICCS48265.2020.9121057.  

[14] Arora P, Arora P. Mining Twitter data for 

depression detection. In: IEEE International 

Conference on signal processing and communication 

(ICSC), 2019; pp. 186–89, https://doi.org/10.1109/ 

ICSC45622.2019.8938353.  

[15] Chen Y, Zhou B, Zhang W, Gong W, Sun G. 

Sentiment analysis based on deep learning and its 

application in screening for perinatal depression. In: 

IEEE Third International Conference on data science 

in cyberspace. 2018; pp. 451–6. https://doi.org/ 

10.1109/DSC.2018.00073.  

[16] Uddin AH, Bapery D, Arif ASM. Depression 

analysis from social media data in Bangla language 

using long short term memory (LSTM) recurrent 

neural network technique. In: International 

Conference on computer, communication, chemical, 

materials and electronic engineering (IC4ME2), 11–12 

July, 2019; pp. 1-4, 

https://doi.org/10.1109/IC4ME247184.2019.9036528

.  

[17] Cheng L-C, Tsai S-L. Deep learning for 

automated sentiment analysis of social media. In: 

http://www.ijsmrt.com/
https://ieeexplore.ieee.org/author/37086143335
https://ieeexplore.ieee.org/author/38667130000
https://ieeexplore.ieee.org/xpl/conhome/9211590/proceeding
https://ieeexplore.ieee.org/xpl/conhome/9211590/proceeding
https://ieeexplore.ieee.org/xpl/conhome/9211590/proceeding
https://www.researchgate.net/profile/Md-Kamrul-Hasan-8
https://www.researchgate.net/profile/Hasan-Mahmud-6
https://www.researchgate.net/profile/Ahmed-Marouf-2
https://www.researchgate.net/profile/Ahmed-Marouf-2
https://www.researchgate.net/journal/IEEE-Transactions-on-Computational-Social-Systems-2329-924X
https://www.researchgate.net/journal/IEEE-Transactions-on-Computational-Social-Systems-2329-924X
https://doi.org/10.1109/ICESC48915.2020.9155674


                     International Journal of Scientific Modern Research and Technology                                                ISSN: 2582-8150  
                     (Volume: 12, Issue: 1, Number: 4) Paper ID: IJSMRT-23120104 

 

IJSMRT|July-2023                                          www.ijsmrt.com                                                                  Page 30  

IEEE/ACM International Conference on advances in 

social networks analysis and mining. 2019; pp. 1001–

4. https://doi.org/10.1145/3341161.3344821.  

[18] Al Asad N, Pranto MAM, Afreen S, Islam MM. 

Depression detection by analyzing social media posts 

of user. In: IEEE International Conference on signal 

processing, information, communication & 

systems(SPICSCON). Dhaka, Bangladesh, 2019; pp. 

13–17, https://doi.org/10.1109/ 

SPICSCON48833.2019.9065101.  

[19] Lyua YW, Chow JC-C, Hwang J-J. Exploring 

public attitudes of child abuse in mainland China: a 

sentiment analysis of China’s social media Weibo. 

Child Youth Serv Rev. 2020;116:102520.  

[20] Abid F, Li C, Alam M. Multi-source social media 

data sentiment analysis using bidirectional recurrent 

convolutional neural networks. Comput Commun. 

2020;157:102–15.  

[21] Hammou BA, Lahcen AA, Mouline S. Towards a 

real-time processing framework based on improved 

distributed recurrent neural network variants with 

fastText for social big data analytics. Inf Process 

Manag. 2020;57:102122.  

[22] Tadessi MM, Lin H, Xu B, Yang L. Detection of 

depressionrelated posts in reddit social media forum. 

IEEE Access. 2019;7:44883–93. 

https://doi.org/10.1109/ACCESS.2019. 2909180.  

[23] Trotzek M, Koitka S, Friedrich CM. Utilizing 

neural networks and linguistic metadata for early 

detection of depression indications in text sequences. 

IEEE Trans Knowl Data Eng. 2018;32:588–601.  

[24] Tariq S, Akhtar N, Afzal H, Khalid S, Mufti MR, 

Hussain S, Habib A, Ahmad G. A novel co-training 

based approach for the classifcation of mental illnesses 

using Social media posts. IEEE Access. 

2019;7:166165–72. https://doi.org/10.1109/ 

ACCESS.2019.2953087.  

[25] Rao G, Zhang Y, Zhang L, Cong Q, Feng Z. 

MGL-CNN: a hierarchical posts representations 

model for identifying depressed individuals in online 

forums. IEEE Access. 2020;8:32395–403. 

https://doi.org/10.1109/ACCESS.2020.297373.  

[26] Syarif I, Ningtias N, Badriyah T. Study on mental 

disorder detection via social media mining. In: IEEE. 

2019; pp. 1–6. 

https://doi.org/10.1109/CCCS.2019.8888096.  

[27] Hussain J, Satti FA, Afzal M, Khan WA, Bilal 

SM, Muhammad ZA, Hafz FA, Hur T, Bang J, Kim J-

I, Park GH, Seung H, Lee S. Exploring the dominant 

features of social media for depression detection. J Inf 

Sci. 2019;46:1–21.  

[28] Katchapakirin K, Wongpatikaseree K, Yomaboot 

P, Kaewpitakkun Y. Facebook social media for 

depression detection in the Thai community. In: 15th 

International Joint Conference on computer science 

and software engineering (JCSSE), 2018; pp. 1–6, 

https://doi.org/10.1109/JCSSE.2018.8457362.  

[29] Yazdavar AH, Mahdavinejad MS, Bajaj G, 

Romine W, Sheth A, Monadjemi AH, Thirunarayan K, 

Meddar JM, Myers A, Pathak J, Hitzler P. Multimodal 

mental health analysis in social media. 2020. 

https://doi.org/10.1371/journal.pone.0226248.  

[30] Islam MR, Kabir MA, Ahmed A, Kamal ARM, 

Wang H, Ulhaq A. Depression detection from social 

network data using machine learning techniques. 

Health Inf Sci Syst. 2018;6:1–12.  

[31] Shen G, Jia J, Nie L, Feng F, Zhang C, Hu T, Chua 

T-S, Zhu W. Depression detection via harvesting 

social media: a multimodal dictionary learning 

solution. In: Twenty-Sixth International Joint 

Conference on artificial intelligence (IJCAI-17) 2017; 

pp. 3838–844.  

[32] Kumar A, Sharma A, Arora A. Anxious 

depression prediction in real-time social data. In: 

International Conference on advanced engineering, 

science, management and technology—2019 

(ICAESMT19).  

[33] Nalinde PB, Shinde A. Machine learning 

framework for detection of psychological disorders at 

OSN. Int J Innov Technol Explor Eng (IJITEE). 

2019;8(11), (ISSN: 2278-3075).  

http://www.ijsmrt.com/
https://doi.org/10.1109/CCCS.2019.8888096


                     International Journal of Scientific Modern Research and Technology                                                ISSN: 2582-8150  
                     (Volume: 12, Issue: 1, Number: 4) Paper ID: IJSMRT-23120104 

 

IJSMRT|July-2023                                          www.ijsmrt.com                                                                  Page 31  

[34] Tajuddin M, Kabeer M, Misbahuddin M. 

Analysis of social media for psychological stress 

detection using ontologies. In: Fourth International 

Conference on inventive systems and control (ICISC 

2020) IEEE Xplore Part Number: CFP20J06-ART; 

ISBN: 978-1-7281-2813-9.  

[35] Baheti RR, Kinariwala S. Detection and analysis 

of stress using machine learning techniques. Int J Eng 

Adv Technol (IJEAT). 2019; 9(1), (ISSN: 2249–

8958).  

[36] Ahmad S, Asghar MZ, Alotaibi FM, Awan I. 

Detection and classifcation of social media-based 

extremist afliations using sentiment analysis 

techniques. Human Centric Comput Inf Sci. 

2019;24:1–23.  

[37] Cornn K. Identifying depression on social media. 

2019. https:// web.stanford.edu/.  

[38] Jabreel M, Moreno A. A deep learning-based 

approach for multi-label emotion classification in 

tweets. MDPI Appl Sci. 2019;9(6):1123. 33. Bouzazi 

M, Ohtsuki T. A pattern-based approach for multi-

class sentiment analysis in Twitter. IEEE Access. 

2017;5:20617–39. 

https://doi.org/10.1109/ACCESS.2017.2740982.  

[39] Rosa RL, Schwartz GM, Ruggiero WV, 

Rodrıguez DZ. A knowledge-based recommendation 

system that includes sentiment analysis and deep 

learning. IEEE Trans Ind Inf. 2019;15(4):2124–35. 

https://doi.org/10.1109/TII.2018.2867174.  

[40] Yang L, Li Y, Wang J, Sherrarat RS. Sentiment 

analysis for E-commerce product reviews in chinese 

based on sentiment lexicon and deep learning. IEEE 

Access. 2020;8:23522–30. https:// 

doi.org/10.1109/ACCESS.2020.2969854.  

[41] Sadr H, Pedram MM, Teshnehlab M. Multi-view 

deep network: a deep model based on learning features 

from heterogeneous neural networks for sentiment 

analysis. IEEE Access. 2020;8:86984–97. 

https://doi.org/10.1109/ACCESS.2020.2992063.  

[42] Chen F, Ji R, Jinsong S, Cao D, Gao Y. Predicting 

microblog sentiments via weakly supervised multi-

modal deep learning. IEEE Trans Multimed. 

2018;20(4):997–1007. https://doi.org/10. 

1109/TMM.2017.2757769.  

 

 

  

 

http://www.ijsmrt.com/

