
 International Journal of Scientific Modern Research and Technology ISSN: 2582-8150

 (Volume: 11, Issue: 1, Number: 5)

IJSMRT|April-2023 www.ijsmrt.com Page 23

Software Defect Prediction using
Deep Learning: A Perspective View

 Saloni Yadav1, Dr. Manoj Lipton2, Chetan Agrawal3
 1Research Scholar, 2Assistant Professor, 3Head and Professor

 Department of CSE, RITS, Bhopal, India

Abstract: Defect prediction is one of the key challenges in software development and programming language research for

improving software quality and reliability. The problem in this area is to properly identify the defective source code with high

accuracy. Developing a fault prediction model is a challenging problem, and many approaches have been proposed throughout

history. The recent breakthrough in machine learning technologies, especially the development of deep learning techniques, has

led to many problems being solved by these methods. Our survey focuses on the deep learning techniques for defect prediction.

We analyze the recent works on the topic, study the methods for automatic learning of the semantic and structural features from

the code, discuss the open problems and present the recent trends in the field.

Keywords: defect prediction; anomaly detection; program analysis; code understanding; neural networks; deep learning

 1. INTRODUCTION

According to the IEEE Standard Classification for

Software Anomalies [1], a software defect is “an

imperfection or deficiency in a work product where

that work product does not meet its requirements or

specifications and needs to be either repaired or

replaced”. Software defects can cause different

problems. Common ways to find software defects are

manual testing and code review. The main drawback

of these methods is that they are quite expensive in

terms of time and effort.

The automatic approaches to the Software Defect

Prediction (SDP) would allow one to reduce the costs

and improve quality of the software projects. Thus,

Software Defect Prediction is an important problem

in the fields of the software engineering and

programming language research. The task is to

identify the defective code with high accuracy (in

terms of the precision and recall) [2]. The

development and breakthrough of machine learning

led to the fact that many tasks can be solved by the

these methods. Recent advances in the fields of

artificial neural networks and machine learning, as

well as the increasing power of the modern

computers (such as supercomputers based on GPUs

with AI accelerating modules), allowed new

concepts, such as deep learning, to emerge [3].

The main idea is that an artificial neural network with

multiple layers is capable of progressively extracting

the higher-level features from the original data to

solve complex problems [4]. For the problem of

software defect prediction, the researchers have

proposed the representation-learning algorithms to

learn semantic representations of programs

automatically and use this representation to identify

the defect-prone code. Using these implicit features

shows better results than the previous approaches

based on the explicit features, such as the code

metrics [5].

 II. LITERATURE WORK

Automated software defect prediction (SDP) methods

are increasingly applied, often with the use of

machine learning (ML) techniques. Yet, the existing

ML-based approaches require manually extracted

features, which are cumbersome, time-consuming

and hardly capture the semantic information reported

in bug reporting tools. Deep learning (DL) techniques

provide practitioners with the opportunity to

automatically extract and learn from more complex

and high-dimensional data. (Görkem Giray, Kwabena

Ebo Bennin, Ömer Köksal, Önder Babur, Bedir

Tekinerdogan; 2023)

Defect prediction is one of the key challenges in

software development and programming language

research for improving software quality and

http://www.ijsmrt.com/

 International Journal of Scientific Modern Research and Technology ISSN: 2582-8150

 (Volume: 11, Issue: 1, Number: 5)

IJSMRT|April-2023 www.ijsmrt.com Page 24

reliability. The problem in this area is to properly

identify the defective source code with high

accuracy. Developing a fault prediction model is a

challenging problem, and many approaches have

been proposed throughout history. (Akimova, E.N.,

Bersenev, A.Y., Deikov, A.A., Kobylkin, K.S.,

Konygin, A.V., Mezentsev, I.P., Misilov; 2021)

Recent advances in machine learning have

stimulated widespread interest within the

Information Technology sector on integrating AI

capabilities into software and services. This goal has

forced organizations to evolve their development

processes. We report on a study that we conducted

on observing software teams at Microsoft as they

develop AI-based applications. (Saleema Amershi,

Andrew Begel, Christian Bird, Robert DeLine,

Harald Gall, Ece Kamar, Nachiappan Nagappan;

2019)

In neural networks literature, there is a strong

interest in identifying and defining activation

functions which can improve neural network

performance. In recent years there has been a

renovated interest of the scientific community in

investigating activation functions which can be

trained during the learning process, usually referred

to as "trainable", "learnable" or "adaptable"

activation functions. They appear to lead to better

network performance. (Andrea Apicella, Francesco

Donnarumma, Francesco Isgrò, Roberto Prevete;

2021)

The software development life cycle generally

includes analysis, design, implementation, test and

release phases. The testing phase should be operated

effectively in order to release bug-free software to

end users. In the last two decades, academicians have

taken an increasing interest in the software defect

prediction problem, several machine learning

techniques have been applied for more robust

prediction. (Ömer Faruk Arar, Kürşat Ayan; 2015)

In recent years, data science has been used

extensively to solve several problems and its

application has been extended to several domains.

This paper summarises the literature on the

synergistic use of Software Engineering and Data

Science techniques (e.g. descriptive statistics,

inferential statistics, machine learning, and deep

learning models) for predicting defects in software. It

shows that there is a variation in the use of data

science techniques and limited reasoning behind the

choice of certain machine learning models but also,

in the evaluation of the obtained results. (Farah

Atif, Manuel Rodriguez, Luiz J. P. Araújo, Utih

Amartiwi, Barakat J. Akinsanya & Manuel Mazzara;

2021)

Systematic literature studies are commonly used in

software engineering. There are two main ways of

conducting the searches for these types of studies;

they are snowballing and database searches. In

snowballing, the reference list (backward

snowballing - BSB) and citations (forward

snowballing - FSB) of relevant papers are reviewed

to identify new papers whereas in a database search,

different databases are searched using predefined

search strings to identify new

papers. Objective: Snowballing has not been in use as

extensively as database search. Hence it is important

to evaluate its efficiency and reliability when being

used as a search strategy in literature studies.

(Deepika Badampudi, Claes Wohlin, Kai Petersen;

2015)

Software fault/defect prediction assists software

developers to identify faulty constructs, such as

modules or classes, early in the software

development life cycle. There are data

mining, machine learning, and deep learning

techniques used for software fault prediction. We

perform analysis of previously published reviews,

surveys, and related studies to distill a list of

questions. These questions were either answered in

the past but needed a fresh look or they were not

considered at all. We justify why answers to newly

added questions are important and divide previous

work based on data mining, machine learning, and

deep learning and compare their performance. (Iqra

Batool, Tamim Ahmed Khan; 2022)

Context: Recent studies have shown that

performance of defect prediction models can be

affected when data sampling approaches are applied

to imbalanced training data for building defect

prediction models. However, the magnitude (degree

http://www.ijsmrt.com/
https://arxiv.org/search/cs?searchtype=author&query=Apicella%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Donnarumma%2C+F
https://arxiv.org/search/cs?searchtype=author&query=Donnarumma%2C+F
https://arxiv.org/search/cs?searchtype=author&query=Isgr%C3%B2%2C+F
https://arxiv.org/search/cs?searchtype=author&query=Prevete%2C+R
https://link.springer.com/chapter/10.1007/978-3-030-75078-7_31#auth-Farah-Atif
https://link.springer.com/chapter/10.1007/978-3-030-75078-7_31#auth-Farah-Atif
https://link.springer.com/chapter/10.1007/978-3-030-75078-7_31#auth-Manuel-Rodriguez
https://link.springer.com/chapter/10.1007/978-3-030-75078-7_31#auth-Luiz_J__P_-Ara_jo
https://link.springer.com/chapter/10.1007/978-3-030-75078-7_31#auth-Utih-Amartiwi
https://link.springer.com/chapter/10.1007/978-3-030-75078-7_31#auth-Utih-Amartiwi
https://link.springer.com/chapter/10.1007/978-3-030-75078-7_31#auth-Barakat_J_-Akinsanya
https://link.springer.com/chapter/10.1007/978-3-030-75078-7_31#auth-Manuel-Mazzara
https://www.sciencedirect.com/topics/computer-science/software-development-lifecycle
https://www.sciencedirect.com/topics/computer-science/software-development-lifecycle
https://www.sciencedirect.com/topics/computer-science/data-mining
https://www.sciencedirect.com/topics/computer-science/data-mining
https://www.sciencedirect.com/topics/computer-science/machine-learning
https://www.sciencedirect.com/topics/computer-science/deep-learning-technique
https://www.sciencedirect.com/topics/computer-science/deep-learning-technique
https://www.sciencedirect.com/topics/computer-science/data-mining
https://www.sciencedirect.com/topics/computer-science/machine-learning

 International Journal of Scientific Modern Research and Technology ISSN: 2582-8150

 (Volume: 11, Issue: 1, Number: 5)

IJSMRT|April-2023 www.ijsmrt.com Page 25

and power) of the effect of these sampling methods

on the classification and prioritization performances

of defect prediction models is still unknown. Goal:

To investigate the statistical and practical

significance of using resampled data for constructing

defect prediction models. Method: We examine the

practical effects of six data sampling methods on

performances of five defect prediction models.

(Kwabena Ebo Bennin; Jacky Keung; Akito

Monden; Passakorn Phannachitta; Solomon Mensah;

2017)

 III. PROBLEM IDENTIFICATION

Following are the problem identification on the basis

of existing work [1]:

 The identification of relevant software bugs

is not perfectly retrieved.

 The retrieval of a software bug is not

perfectly identified.

 The unidentified software bug may detect

due to low accuracy.

IV. RESEARCH OBJECTIVES

Following are the objectives of the proposed work:

 To improve precision for perfect retrieval of

relevant software bugs.

 To improve recall for perfectly relevant

software bugs in the retrieval process.

 To improve accuracy for exactness of

software bug detection.

 IV. COMPARATIVE ANALYSIS

 Table 1: Analysis of Different Techniques

Techniques Data set used Advantages Limitations

Artificial Neural

network [3]

NASA

AR1,AR6 And

MDP

No need to know metrics relationships. It

has self-learning capability therefore get

more accuracy

It cannot manage imprecise

information

Support Vector

Machine [4]

NASAAR1 ,

AR6

Using different kernel function it gives

better prediction result

Not suitable for large

number of software metrics

Decision Tree [5] NASA

AR1,AR6

Performing operation on tree structure

therefore more accurate result compare

to others

Construction of decision tree

is complex

Association Rule

[6]

NASA MDP

repository

Generated rules using historical data and

predict defect

Require Continues value of

software metrics

Clustering [10] NASA MDP

repository

It suitable for small dataset Dataset should be unlabeled

http://www.ijsmrt.com/
https://ieeexplore.ieee.org/author/37085707205
https://ieeexplore.ieee.org/author/37545406300
https://ieeexplore.ieee.org/author/37325963000
https://ieeexplore.ieee.org/author/37325963000
https://ieeexplore.ieee.org/author/38233044600
https://ieeexplore.ieee.org/author/37086015776

 International Journal of Scientific Modern Research and Technology ISSN: 2582-8150

 (Volume: 11, Issue: 1, Number: 5)

IJSMRT|April-2023 www.ijsmrt.com Page 26

 V. PROPOSED PREDICTION MODEL

The outline of the proposed prediction model SVM-

MMN (Support Vector Machine with Min-Max

Normalization) is as follows:

 Figure 1: Proposed Model of SVM-MMN (Proposed Methodology)

 VI. CONCLUSIONS

One of the major challenges in modern software

engineering is predicting defective code. Recent

developments in the field of machine learning,

especially the multi-layered neural networks and deep

learning algorithms, provide powerful techniques,

which utilize learning algorithms for representations

of the source code that captures semantic and

structural information.

This survey presents the latest research progress in

software defect prediction using the deep learning

techniques, such as the Transformer architectures.

We formulate the main difficulties of the defect

prediction problem as lack of data and complexity of

context and discuss the ways to alleviate these

problems.

 REFERENCES

[1] Görkem Giray, Kwabena Ebo Bennin, Ömer

Köksal, Önder Babur, Bedir Tekinerdogan, “On the

use of deep learning in software defect prediction”,

The Journal of Systems & Software, 2023.

[2] G. P. Bhandari and R. Gupta, “Machine learning

based software fault prediction utilizing source code

metrics,” in 250 2018 IEEE 3rd International

Conference on Computing, Communication and

Security (ICCCS), 2018, pp. 40–45.

[3] R. Malhotra, “A systematic review of machine

learning techniques for software fault prediction,”

Appl. Soft Comput., vol. 27, pp. 504–518, Feb. 2015.

[4] L. Son et al., “Empirical Study of Software Defect

Prediction: A Systematic Mapping,” Symmetry

(Basel)., vol. 11, no. 2, p. 212, Feb. 2019.

[5] C. W. Yohannese and T. Li, “A Combined-

Learning Based Framework for Improved Software

Fault Prediction,” Int. J. Comput. Intell. Syst., vol.

10, no. 1, p. 647, Dec. 2017.

[6] A. Hudaib et al., “ADTEM-Architecture Design

Testability Evaluation Model to Assess Software

Architecture Based on Testability Metrics,” J. Softw.

Eng. Appl., vol. 08, no. 04, pp. 201–210, Apr. 2015.

[7] S. Elmidaoui, L. Cheikhi, and A. Idri, “Towards a

Taxonomy of Software Maintainability Predictors,”

Springer, Cham, 2019, pp. 823–832.

[8] M. Riaz, E. Mendes, and E. Tempero, “A

systematic review of software maintainability

prediction and metrics,” in 2009 3rd International

Symposium on Empirical Software Engineering and

Measurement, 2009, pp. 367–377.

http://www.ijsmrt.com/

 International Journal of Scientific Modern Research and Technology ISSN: 2582-8150

 (Volume: 11, Issue: 1, Number: 5)

IJSMRT|April-2023 www.ijsmrt.com Page 27

[9] “PROMISE DATASETS PAGE.” [Online].

Available:

http://promise.site.uottawa.ca/SERepository/datasetsp

age.html. [Accessed: 01-Jul-2019].

[10] R. Malhotra and S. Kamal, “An empirical study

to investigate oversampling methods for improving

software defect prediction using imbalanced data,”

Neurocomputing, vol. 343, pp. 120–140, May 2019.

[11] 610.12-1990 IEEE Standard Glossary of

Software Engineering Terminology. .

[12] P. Oman and J. Hagemeister, “Construction and

testing of polynomials predicting software

maintainability,” J. Syst. Softw., vol. 24, no. 3, pp.

251–266, Mar. 1994.

[13] T. Anderson, P. A. Barrett, D. N. Halliwell, and

M. R. Moulding, “Software Fault Tolerance: An

Evaluation,” IEEE Trans. Softw. Eng., vol. SE-11,

no. 12, pp. 1502–1510, Dec. 1985.

[14] I. U. Nisa and S. N. Ahsan, “Fault prediction

model for software using soft computing techniques,”

in 2015 International Conference on Open Source

Systems & Technologies (ICOSST), 2015, pp. 78–83.

[15] S. N. Ahsan and F. Wotawa, “Fault Prediction

Capability of Program File’s Logical-Coupling

Metrics,” in 2011 Joint Conference of the 21st

International Workshop on Software Measurement

and the 6th International Conference on Software

Process and Product Measurement, 2011, pp. 257–

262.

[16] D. Radjenović, M. Heričko, R. Torkar, and A.
Živkovič, “Software fault prediction metrics: A

systematic literature review,” Inf. Softw. Technol.,

vol. 55, no. 8, pp. 1397–1418, Aug. 2013.

[17] R. Malhotra, “Comparative analysis of statistical

and machine learning methods for predicting faulty

modules,” Appl. Soft Comput., vol. 21, pp. 286–297,

Aug. 2014.

[18] Z. Xu et al., “Software defect prediction based

on kernel PCA and weighted extreme learning

machine,” Inf. Softw. Technol., vol. 106, pp. 182–
200, Feb. 2019.

[19] J. Moeyersoms, E. Junqué de Fortuny, K.

Dejaeger, B. Baesens, and D. Martens,

“Comprehensible software fault and effort prediction:

A data mining approach,” J. Syst. Softw., vol. 100,

pp. 80–90, Feb. 2015.

[20] Q. Yu, J. Qian, S. Jiang, Z. Wu, and G. Zhang,

“An Empirical Study on the Effectiveness of Feature

Selection for Cross-Project Defect Prediction,” IEEE

Access, vol. 7, pp. 35710–35718, 2019.

http://www.ijsmrt.com/

